大船靠岸!疯了吧?不到600元的算力卡,可转接成算力超万元级专业显卡,真AI圈的“平民超跑”!

专业算力卡是不少垃圾佬的最爱捡漏显卡之一,比如 P102、P104、P106、 P40、M40、P100 之类的计算卡性价比都非常高,不足千元甚至两三百元就能摸到 8G 显存甚至 16G 显存的门槛,这就是下面要分享的这款大船靠岸的专业算力卡,Tesla V100 SXM2 16G 显卡,一款不到600元的算力卡,真AI圈的“平民超跑”!

图片

关注我,后续分享更多精彩内容

关注可加交流群哈!

群里有大佬哥

纯个人交流群,无利益纠纷,随意畅聊装机乐趣,优化装机配置!

有大佬,也有小白,欢迎您的加入,期待您的分享!

图片

图片

扫码添加后可拉DIY交流群!

一、Tesla V100 SXM2 16G 显卡介绍

Tesla V100 SXM2 16G 显卡是一款专业算力卡,它是IBM服务器的二手拆机的显卡,作为专业计算卡,它没有显示输出接口,不能直接用于日常的图形显示,但在AI服务器应用中,这并不影响它发挥实力。

这款显卡真的是性价比之王,它有5120个CUDA核心和16GB显存容量,最大功耗达到了250W,采用被动式散热方式。这款显卡不仅适用于深度学习,还能加快AI高性能设计和图形技术。

二、Tesla V100 SXM2 16G 显卡参数

Tesla V100 SXM2 16G 显卡是一款发布于2017年的显卡,它是基于NVIDIA Volta架构,采用12nm工艺 ,拥有5120个CUDA核心,搭配16GB的HBM2显存,显存位宽达到了4096bit,数据处理能力强大。并且它还带有640个Tensor核心,能极大加快AI和机器学习的运算速度,在深度学习领域表现尤为出色。需要考虑就是入手用户个人的动手,手搓能力如何了,毕竟你得折腾。

不过V100作为专业计算卡,虽可运行游戏,但性价比和体验远不及同代GeForce产品,更适合用于深度学习、科学计算等领域。若用户主要关注游戏性能,应优先考虑其他显卡型号。

二手平台上的 Tesla V100 16G 显卡都是 SXM2 版本的,需要搭配 PCIE 转接卡才能用在家用 PC 主板上,PCIE版本的显卡价格会贵上不少,而且不符合垃圾佬捡漏和折腾的精神宗旨。

如果你主要用于个人的AI服务器搭建、深度学习训练等工作,那么这款不到600元的二手拆机NVIDIA Tesla V100 SXM2 16G显卡,搭配pcie转接卡,绝对是性价比之选。

虽然它在游戏等方面不如RTX 3080,但在专业计算领域的表现足以让人忽视这一点。不过在入手二手卡时,也要注意检查显卡的状态和兼容性,确保能够稳定运行。 

三、Tesla V100 SXM2 16G 显卡价格

目前某鱼上Tesla V100 SXM2 16G 显卡价位为595元,大多在599元,价位如今还是比较坚挺,这还是其手搓前的显卡价位,如果搞好价位应该接近千元,较好的用料的手搓配件肯定是超过了千元水平,当然也有手搓好的成品在售,网络上如今可找到不少大佬的手搓分享实战教程。

需要说明的是,大船靠岸的时候,刚流出的话,价位仅350元,有大佬就捡漏实测分享了该款显卡,奈何性价比实在太高了,再加上AI应用的持续火热,更架不住垃圾佬的接盘,涨到如今的价位水平。

毫无疑问,这又是一款垃圾佬的毕业显卡,需要较强的手搓动手能力,同时卡几乎无售后或者质保期极短,如果不是主打AI的老哥,还是谨慎入手吧!

以上仅一家之言,仅供参考!

   往期精彩:

当下现役显卡推荐游戏性能排行榜(AMD篇)!

图片

DIY电脑垃圾佬的最爱——“钉子户”E3神教装机配置清单推荐!

图片

DIY电脑垃圾佬的最爱——低价(高性价比)装机配件推荐!

图片

DIY电脑垃圾佬的最爱——P106-100显卡!

图片

渣渣手残党DIY装机必备软件工具教程推荐!

图片

往期手残记录:


DIY组装电脑踩坑,手残党DIY装机分享!

图片

老爷“鸡”升级小记!

图片

假装是个电工,记一次家用监控安装之旅

图片

·················END··················

扫码添加后可拉DIY交流群!

你好,我是菜鸡@搞机子,

革命老区外出进城务工人员,

IT垃圾佬、喜欢数码、捡垃圾、DIY电脑...

公众号不挣钱,交个朋友。

扫码关注,滴,学生卡;

老司机,快上车;

关注我,三千预算进图吧,学校对面开网吧!

### 力卡概述 力卡是一种专门设计用于加速特定类型计任务的硬件设备。这类卡片通常配备有高性能处理器,如图形处理单(GPU)、张量处理单(TPU),或其他专用集成电路(ASIC)。这些组件能够显著提升数据密集型操作的速度和效率,尤其是在人工智能、机器学习等领域。 #### 主要特点 - **高并行处理能**:通过集成大量核心来执行多线程运。 - **低延迟通信接口**:支持快速的数据传输速率,减少瓶颈效应。 - **专为复杂法优化**:针对矩阵乘法等常见于神经网络中的运进行了特别的设计改进[^1]。 ### 应用领域 #### AI与机器学习 随着模型规模不断扩大至数亿甚至数十亿参数别,传统的CPU难以胜任高效训练的要求。因此,在现代数据中心内部署大量的GPU或TPU作为扩展成为主流趋势之一。它们不仅有助于缩短迭代周期,还能改善最终预测精度。 ```python import tensorflow as tf from tensorflow.keras import layers, models model = models.Sequential([ layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), layers.MaxPooling2D((2, 2)), ... ]) # 使用 GPU 加速训练过程 with tf.device('/GPU:0'): model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) ``` #### 高效能计(HPC) 对于科学模拟仿类应用程序而言,例如天气预报建模或是基因序列分析等工作负载同样受益匪浅。借助强大的浮点运和内存带宽优势,使得原本耗时长久的任务可以在更短时间内完成。 #### 边缘计环境下的实时响应 当涉及到物联网(IoT)装置所产生的海量流式资料时,则更加凸显出了本地端即时处理的重要性。此时便可通过安装小型化的嵌入式版本模块到终端节点上来达成目的,进而减轻云端服务器的压同时提供更快捷的服务体验[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值