相关性分析-皮尔森、斯皮尔曼肯德尔相关性系数

本文详细介绍了皮尔森、斯皮尔曼和肯德尔三种相关性系数的计算方法及其适用场景。通过实例解析,帮助读者深入理解这些统计量在相关性分析中的应用,以便于在实际数据工作中更准确地评估变量间的关联强度。
摘要由CSDN通过智能技术生成
def person_func(x,y):
    """
    1. person correlation coefficient(皮尔森相关性系数)
    皮尔逊相关系数通常用r或ρ表示,度量两变量X和Y之间相互关系(线性相关)
    (1)公式
       皮尔森相关性系数的值等于它们之间的协方差cov(X,Y)除以它们各自标准差的乘积(σX, σY)。
    (2)数据要求
       a.正态分布
         它是协方差与标准差的比值,并且在求皮尔森相关性系数以后,通常还会用t检验之类的方法来进行皮尔森相关性系数检验,而t检验是基于数据呈正态分布的假设的。
       b.实验数据之间的差距不能太大
         比如:研究人跑步的速度与心脏跳动的相关性,如果人突发心脏病,心跳为0(或者过快与过慢),那这时候我们会测到一个偏离正常值的心跳,如果我们把这个值也放进去进行相关性分析,它的存在会大大干扰计算的结果的。
    """
    X1=pd.Series(x)
    Y1=pd.Series(y)
    X1.mean() #平均值
    Y1.mean() #
    X1.var() 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值