Pandas.Series.idxmax() 最大值索引 详解 含代码 含测试数据集 随Pandas版本持续更新

关于Pandas版本: 本文基于 pandas2.2.0 编写。

关于本文内容更新: 随着pandas的stable版本更迭,本文持续更新,不断完善补充。

传送门: Pandas API参考目录

传送门: Pandas 版本更新及新特性

传送门: Pandas 由浅入深系列教程

Pandas.Series.idxmax()

Series.idxmax 用于返回最大值第一次出现位置的行索引。

语法:

Series.idxmax(*axis=0, skipna=True, *args, *kwargs)

返回值:

  • Index

    返回值是第1个最大值的行索引

参数说明:

axis 指定查找方向(行或列)

axis:*{0 or ‘index’}

axis 参数对 Series 无效。

skipna 是否排除 缺失值

skipna:bool, default True

skipna 参数用于控制是否排除缺失值,默认 skipna=Ture 表示排除缺失值:

  • True 排除缺失值。
  • False 不排除缺失值。

⚠️ 注意 :

不建议设置为 skipna=False 。因为当skipna=False,一旦 Series 出现缺失值,将引发报错 ValueError例1

*args, *kwargs

为了保持和 Numpy 兼容而保留的参数。一般不需要传值。

相关方法:

➡️ 相关方法


示例:

测试文件下载:

本文所涉及的测试文件,如有需要,可在文章顶部的绑定资源处下载。

若发现文件无法下载,应该是资源包有内容更新,正在审核,请稍后再试。或站内私信作者索要。

测试文件下载位置.png

测试文件下载位置

示例1:缺失值对计算结果的影响

示例1-1、构建演示数据
import numpy as np
import pandas as pd

s = pd.Series([np.NaN, 103.11, 103.11, 55.48], index=["第一行", "第二行", "第三行", "第四行"])
s
第一行       NaN
第二行    103.11
第三行    103.11
第四行     55.48
dtype: float64
示例1-2、观察排除缺失值(保持默认)时,最大值首次出现的位置
s.idxmax()
'第二行'

示例1-3、不排除缺失值
df.idxmax(skipna=False)
C:\Users\Administrator\AppData\Local\Temp\ipykernel_609288\35380768.py:1: FutureWarning: The behavior of Series.idxmax with all-NA values, or any-NA and skipna=False, is deprecated. In a future version this will raise ValueError
  df.idxmax(skipna=False)





nan
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数象限

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值