机器学习
机器学习
~华仔呀
-----------
展开
-
Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes论文解读
本文是将参照二维Harris角点检测改进而来,目的是在三维点云中检测出关键点。1、计算Harris算子为了计算导数,我们将二次曲面拟合到以下点上变换点的集合。利用最小平方法,我们找到一个抛物线的形式。我们选择了一个只有6个项的二次曲面,因为它代表一个抛物线。也就是说,如果我们需要一个带有二次项的两个变量的函数,它是最佳选择。增加更多的项意味着可以拟合一个更复杂的曲面。然而,更复杂的曲面在域的某些点上没有定义好的导数。此外,我们需要一个简单的表达式来应用导数。由于我们对点v中的导数感兴趣,我们原创 2020-08-06 22:30:16 · 1512 阅读 · 0 评论 -
余弦相似度
余弦相似度可以用于计算两篇文章的相似情况。步骤:一、每篇文章各取出若干个关键词,合并成一个集合二、计算每篇文章对于这个集合中的词的词频三、生成两篇文章各自的词频向量;生成两篇文章各自的词频向量四、计算两个向量的余弦相似度,值越大就表示越相似。计算两个向量的余弦相似度,值越大就表示越相似。...原创 2020-07-16 22:50:05 · 265 阅读 · 0 评论 -
TF-IDF算法
TF-IDF算法某个词的TF-IDF值就越大,说明该词对文章的重要性越高,越有可能成为关键词。TF(Term Frequency)词频IDF(Inverse Document Frequency)逆文档频率IDF大小与一个词的常见程度成反比TF-IDF的计算...原创 2020-07-16 22:33:04 · 358 阅读 · 0 评论 -
CCIPCA
https://blog.csdn.net/sinat_31425585/article/details/81748360下面这篇总结的很好https://blog.csdn.net/u013468614/article/details/103273933原创 2019-12-09 19:00:52 · 475 阅读 · 0 评论 -
ICA
ICA算法:https://www.cnblogs.com/jerrylead/archive/2011/04/19/2021071.htmlhttps://blog.csdn.net/ctyqy2015301200079/article/details/86705869#font_face_3__font_37https://blog.csdn.net/sinat_36219858/...原创 2019-11-21 20:09:22 · 198 阅读 · 0 评论 -
SVM和SVR
SVM(支持向量机)(Support Vector Machines)解决问题:分类 回归SVM分类问题目标:寻找区分两类的超平面(hyper plane),使边际(margin)最大推导转化为凸优化问题5凸优化问题#广义拉格朗日乘子法#Karush-Kuhn-Tucker最优化条件(KKT条件)拉格朗日乘子法的一种推广,可以处理有不...原创 2019-06-22 17:52:00 · 2653 阅读 · 0 评论 -
主成分分析(PCA)
4主成分分析PCA(Principal Component Analysis)-降维算法#例子:有多个特征值#通过PCA后#降维分析找到数据最重要的方向(方差最大的方向)#第一个主成分就是从数据差异性最大(方差最大)的方向提取出来的,第二个主成分则来自于数据差异性次大的方向,并且要与第一个主成分方向正交#线性回归和PCA的区别PCA算法步骤:...原创 2019-06-22 11:33:35 · 263 阅读 · 0 评论 -
聚类算法
201906191聚类算法#分类和聚类区别分类是有标签的,聚类是没有的2K-MEANS#算法接受参数k,然后将实现输入的n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;不同聚类中的对象相似度较小。例:k=3 就将对象聚类成三个类别#算法设计思想:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代地方法,逐次更新各聚类中心的值,...原创 2019-09-29 19:33:50 · 1083 阅读 · 0 评论 -
线性回归和逻辑回归
201906091一元线性回归:一个自变量一个因变量#两个变量的关系用一条直线来模拟#如果包含两个以上的自变量,则称为多元回归分析2最小二乘法,就是代价函数的定义3相关系数:衡量线性相关性的强弱(越接近1越接近线性关系)4决定系数注:y(带一个小帽子的是)预测值5梯度下降法(利用求到的梯度不断改变两个参数的值)#首先初始化θ0,θ1#不断改变θ0,θ...原创 2019-06-11 22:37:57 · 491 阅读 · 0 评论 -
机器学习之贝叶斯算法(贝叶斯公式、词袋模型、TF-IDF算法)总结
6贝叶斯算法(分类)已知:P(X|H),求P(H|X)#通过抽样来获得先验概率#贝叶斯例子#如果有多个特征的情况下会使得统计量巨大,n个特征,需要计算2n-1次#解决办法:朴素贝叶斯(假设:特征X1,X2,X3……之间都是相互独立的)#贝叶斯模型 #多项式模型 #伯努利模型 #混合模型 #高斯模型...原创 2019-06-16 18:32:39 · 1462 阅读 · 0 评论 -
机器学习之集成学习(Boosting算法、Bagging算法、Stacking算法)总结
201906161集成学习集成学习就是组合多个学习器,最后可以得到一个更好的学习器#集成学习算法 #装袋(bagging):个体学习器之间不存在强依赖关系 #随机森林(Random Forest) #提升(boosting):个体学习器之间存在强依赖关系 #Stacking2bagging是一种有放回抽样...原创 2019-06-16 18:30:22 · 2059 阅读 · 1 评论 -
机器学习之决策树总结
3决策树决策树比较适合分析离散数据,如果是连续数据要先转成离散数据再做分析ID3算法,C4.5,CART算法4信息熵(用于度量不确定性)5连续变量处理对变量进行切分6C4.5算法7CART算法#例子:分别计算他们的Gini系数增益,取Gini系数增益值最大的属性作为决策树的根节点属性。#根节点的Gini系数:#根据是否有房进行划分...原创 2019-06-15 17:18:18 · 325 阅读 · 0 评论 -
机器学习之KNN(K-nearest neighbors)
201906151KNN(分类)K近邻算法 (K一般取单数)#选取所有已知类别的实例作为参照选择参数K#计算位置实例与所有已知实例的距离#选择最近K个已知实例#根据少数服从多数的投票法则,让位置实例归类为K个最邻近样本中最多数的类别2算法缺点3 kd-tree...原创 2019-06-15 09:59:30 · 211 阅读 · 0 评论 -
感知机与神经网络初探
201906121感知机以下是为了运算方便2感知机学习规则#感知机学习规则例子#感知机收敛条件误差小于某个预先设定的较小的值两次迭代之间的权值变化已经很小设定最大迭代次数,当迭代超过最大次数就停止3线性神经网络线性神经网络在结构上与感知器非常相似,只是激活函数不同在模型训练时把原来的sign函数改成了purelin函数:y=x4BP神...原创 2019-06-12 22:21:36 · 719 阅读 · 0 评论