hdu1695—— GCD
莫比乌斯函数的基础应用。
我的做法是每次都把重复的减去。可以写成最后再一起减,写的时候感觉会更加有条理。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 100010
#define LL long long int
int vis[N], mu[N], cnt, prime[N];
void Init()
{
memset(vis,0,sizeof(vis));
mu[1] = 1;
cnt = 0;
for(int i=2; i<N; i++)
{
if(!vis[i])
{
prime[cnt++] = i;
mu[i] = -1;
}
for(int j=0; j<cnt&&i*prime[j]<N; j++)
{
vis[i*prime[j]] = 1;
if(i%prime[j]) mu[i*prime[j]] = -mu[i];
else
{
mu[i*prime[j]] = 0;
break;
}
}
}
}
int main()
{
Init();
int T, a, b, c, d, k, cas=1;
scanf("%d", &T);
long long int ans;
while(T--)
{
ans=0;
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
if(k==0)
{
printf("Case %d: 0\n", cas++);
continue;
}
int Min=min(b, d);
for(int i=1; i*k<=Min;i++)
{
int f=i*k;
int x=b/f, y=d/f;
int num=min(x, y);
if(num<=1)
ans+=(long long int)((LL)mu[i]*(LL)x*(LL)y);
else
ans+=(long long int)((LL)mu[i]*((LL)x*(LL)y-(LL)(num-1)*(LL)(num)/2));
}
printf("Case %d: %I64d\n", cas++, ans);
}
return 0;
}
因为强制转换时的问题wa了很多次。注意结果为负数时的取模问题。