机器学习
Jeofu
这个作者很懒,什么都没留下…
展开
-
PASCAL VOC数据集分析
PASCAL VOC数据集分析PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge。本文主要分析PASCAL VOC数据集中和图像中物体识别相关的内容。在这里采用PASCAL VOC2012作为例子。下载地址为:点击打开链接。(本文中的系统环境为ubuntu14.04)下载完之后解压,可以在原创 2017-01-01 23:16:06 · 2937 阅读 · 2 评论 -
numpy+mkl,scipy
win10下使用keras。编译用的Anaconda2.7,里面集成了很多科学计算工具包,numpy, scipy等。但在实际运行中会有报错。解决如下:1.卸载numpy,scipy。如在使用过程中,需退出,再卸载。2.下载numpy_mkl.whl 和 scipy.whl文件(http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy)原创 2017-03-17 19:57:14 · 2275 阅读 · 0 评论 -
实现自己的卷积神经网络
一、卷积神经网络(CNN)卷积神经网络(ConvolutionalNeural Network,CNN)是人工神经网络的一种。当前已经成为图像和语音识别领域有十分广泛的应用,特别是在识别位移、缩放及其他形式扭曲不变性的二维图形方面有十分优异的表现,已经成为一个十分重要的研究方向。关于CNN的详细解释可以看这里:http://blog.csdn.net/zouxy09/article原创 2016-12-30 22:26:08 · 1500 阅读 · 0 评论 -
池化层实现
池化层的推导池化层的输入一般来源于上一个卷积层,主要作用是提供了很强的鲁棒性(例如max-pooling是取一小块区域中的最大值,此时若此区域中的其他值略有变化,或者图像稍有平移,pooling后的结果仍不变),并且减少了参数的数量,防止过拟合现象的发生。池化层一般没有参数,所以反向传播的时候,只需对输入参数求导,不需要进行权值更新。池化层的前向计算原创 2016-12-30 22:19:52 · 1481 阅读 · 0 评论 -
卷积层的实现
卷积层的推导卷积层的前向计算如下图,卷积层的输入来源于输入层或者pooling层。每一层的多个卷积核大小相同,在这个网络中,我使用的卷积核均为5*5。如图输入为28*28的图像,经过5*5的卷积之后,得到一个(28-5+1)*(28-5+1) = 24*24、的map。卷积层2的每个map是不同卷积核在前一层每个map上进行卷积,并将每个对应位置上的值相原创 2016-12-30 22:18:47 · 1036 阅读 · 0 评论 -
卷积神经网络CNN
卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC(1)卷积层:用它来进行特征提取,如下:输入图像是32*32*3,3是它的深度(即R、G、B),卷积层是一个5*5*3的filter(感受野),这里注意:感受野的深度必须和输入图像的深度相同。通过一个filter与输入图像的卷积可以得到一个28*28*1的原创 2016-12-30 21:56:29 · 694 阅读 · 0 评论 -
CNN中权值共享理解
第一步,针对一个神经元,一幅640*360图像,一个神经元要对应640*360个像素点,即一个神经元对应全局图像,全连接的话一个神经元就有640*360个参数;第二步,然而,图像的空间联系是局部的,就像人是通过一个局部的感受野去感受外界图像一样,每一个神经元都不需要对全局图像做感受,每个神经元只感受局部的图像区域,然后在更高层,将这些不同局部的神经元综合起来就可以得到全局信息。假如每个局部原创 2016-12-30 21:50:08 · 585 阅读 · 0 评论 -
ImageNet和CNN可以帮助医学图像的识别吗?
从ImageNet和CNN说起图像的分类和识别一直是计算机视觉的热门研究领域,在医学图像领域,很多方法也都是从计算机视觉领域借鉴过来的,而计算机视觉的许多方法又离不开机器学习和人工智能的基础。在典型的图像分类和识别问题中,通常有两个重要的步骤,一个是特征提取,常见的有GLCM, HOG, LBP, Haar Wavelet, 一个是分类器, 例如SVM, Random Forest原创 2017-01-04 21:01:42 · 569 阅读 · 0 评论 -
深度学习资料
1, Michael Nielsen写的在线教程 http://neuralnetworksanddeeplearning.com/介绍了神经网络的基本结构,有例子展示为何神经网络可以学习任何函数,为什么传统的深度学习很慢等。还提供了基于Theano的用于MNIST手写数字的识别的例子代码。2, 斯坦福大学的深度学习课程 http://cs231n.github.io/这是原创 2017-01-04 21:00:40 · 289 阅读 · 0 评论 -
深层学习为何要“Deep”(上)
作者:YJango链接:https://zhuanlan.zhihu.com/p/22888385来源:知乎深层学习开启了人工智能的新时代。不论任何行业都害怕错过这一时代浪潮,因而大批资金和人才争相涌入。但深层学习却以“黑箱”而闻名,不仅调参难,训练难,“新型”网络结构的论文又如雨后春笋般地涌现,使得对所有结构的掌握变成了不现实。我们缺少一个对深层学习合理的认识。本文就是通转载 2017-01-04 14:11:12 · 538 阅读 · 0 评论 -
经验风险,期望风险,结构风险
在机器学习中,通常会遇到期望风险、经验风险和结构风险这三个概念,一直不知道这三个概念之间的具体区别和联系,今天来梳理一下:要区分这三个概念,首先要引入一个损失函数的概念。损失函数是期望风险、经验风险和结构风险的基础。损失函数是针对单个具体的样本而言的。表示的是模型预测的值与样本真实值之间的差距。比如对于某个样本,其真实的值为Yi,而我们的模型选择决策函数为f,那么通过模型预测的值为f(Xi原创 2017-07-21 11:26:54 · 285 阅读 · 0 评论