学习次模函数-第2章 定义

纵观本专著,我们认为V=\{1,2,3,\cdots,p\},p>0及其幂集(即, 所有子集的集合)2^V,其基数为2^p。我们也考虑一个实值集函数F:2^V\to \mathbb{R},使得F(\phi )=0。 与凸函数的一般约定相反(见附录A),我们不允许函数F有无穷大的值。

次模分析领域起源于拟阵理论,次模函数最初被看作是拟阵秩函数的扩展(见[63]和§6.8),它们的分析与我们在§2.2中定义的特殊凸多面体紧密相连。 在与凸分析建立了联系之后[63,135],次模性作为组合优化的中心概念出现了。 和凸性一样,科学和工程领域的许多模型,特别是机器学习领域的许多模型,都包含了次模性(参见第6章的许多例子)。 像凸性一样,次模性通常足以导出一般理论和一般算法(当然,一些特殊情况仍然很重要,如最小割/最大流问题),它们具有吸引人的理论和实践性质。 最后,像凸性一样,在许多领域中,次模函数在组合和凸优化中扮演着中心但有些隐藏的角色。 例如,在第5章中,我们展示了在涉及离散结构的凸优化中,有多少问题最终被转换为次模优化问题,然后这些次模优化问题直接导出了有效的算法。

在§2.1中,我们给出了次模性的定义及其等价刻画。 尽管次模性看起来相当抽象,但事实证明,它在许多示例中自然出现。 在本章中,我们将只回顾几个经典的例子,这些例子将有助于说明我们的各种结果。 有关示例的详细列表,请参见第6章。 在§2.2中,我们定义了传统上与次模函数相关联的两个多面体,而在§2.3中,我们考虑了非减次模函数,通常称为多拟阵秩函数。

2.1 次模性的等价定义

次模函数可以由几个等价的性质来定义,我们现在就来介绍。加法测度是集合函数的第一个例子,其中基数是最简单的例子。众所周知的基数性质是,对于任意两个集合A,B\subseteq V,则\left | A \right |+\left |B \right |=\left | A\cup B \right |+\left | A\cap B \right |,这推广到所有的加法测度。当且仅当,前面的等式对于V的所有子集A,B仅是一个不等式时,函数是次模函数:

第2.1条定义 (次模函数)

一个集合函数F:2^V\to \mathbb{R}是次模的当且仅当,对于所有的子集A,B\subseteq V,我们有:F(A)+F(B)\geq F(A\cup B)+F(A\cap B)

注意,如果一个函数是次模的,并且使得F(\phi)=0(我们总是假设),则对于任意两个不相交的集合A,B\subseteq V,则F(A\cup B)\leq F(A)+F(B),即: 次模性意味着次可加性(但反之则不成立)。

如前所述,次模函数的最简单的例子是基数(例如, F(A)=\left | A \right |\left | A \right |A的元素的数目),它既是次模的又是超模的(例如, 它的对立A \mapsto -F(A)是次模的)。 事实证明,只有加法测度才具有模的性质。

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值