自己对动态规划浅薄的理解:
动态规划的题目分为两大类,一种是求最优解类,典型问题是背包问题,另一种就是计数类,比如这里的统计方案数的问题,它们都存在一定的递推性质。前者的递推性质还有一个名字,叫做 「最优子结构」 ——即当前问题的最优解取决于子问题的最优解,后者类似,当前问题的方案数取决于子问题的方案数。所以在遇到求方案数的问题时,我们可以往动态规划的方向考虑。
不同路径I
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
/**
* @param {number} m
* @param {number} n
* @return {number}
*/
var uniquePaths = function(m, n) {
if(m == 0 && n == 0) return 0
// 生成一个二维m行n列数组
var dp = Array.from(new Array(m), function() {
return new Array(n).fill(0)
})
for (let i = 0; i < m; i++) {
dp[i][0] = 1;
}
for (let j = 0; j < n; j++) {
dp[0][j] = 1;
}
for(let i = 1; i < m; i++) {
for(let j = 1; j < n; j++) {
dp[i][j] = dp[i-1][j] + dp[i][j-1]
}
}
return dp[m-1][n-1]
};
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
/**
* @param {number[][]} obstacleGrid
* @return {number}
*/
var uniquePathsWithObstacles = function(obstacleGrid) {
let m = obstacleGrid.length
let n = obstacleGrid[0].length
if(m == 0 && n == 0) return 0
let dp = new Array(m).fill(0).map(function(){
return new Array(n).fill(0)
})
for(let i = 0; i < m;i++) {
if(obstacleGrid[i][0] == 0) {
dp[i][0] = 1
} else {
break
}
}
for(let j = 0; j < n; j++) {
if(obstacleGrid[0][j] == 0) {
dp[0][j] = 1
} else {
break
}
}
for(let i = 1; i < m; i++) {
for(let j = 1; j < n; j++) {
if(obstacleGrid[i][j] == 1) {
dp[i][j] = 0
continue
} else {
dp[i][j] = dp[i-1][j] + dp[i][j-1]
}
}
}
return dp[m-1][n-1]
};