不同路径
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
说明:m 和 n 的值均不超过 100。
示例 1:
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右
示例 2:
输入: m = 7, n = 3
输出: 28
解题思路
用dp[i][j]表示从[0][0]点到[i][j]点的不同路径有多少,那么dp[i][j]的不同路径数就是dp[i-1][j]向左走,和dp[i][j-1]向下走的路径之和,即dp[i][j]=dp[i-1][j]+dp[i][j-1]。在 第一行或者第一列只有一条路径,即dp[0][i]=1,dp[i][0]=1;
C++代码
int uniquePaths(int m, int n) {
if(m==0||n==0)return 0;
vector<vector<int>> dp(m,vector<int>(n,0));
for(int i=0;i<m;i++){
dp[i][0]=1;
}
for(int i=0;i<n;i++){
dp[0][i]=1;
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
不同路径II
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
说明:m 和 n 的值均不超过 100。
示例 1:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
解题思路
和“不同路径”一样,但是对于第一行和第一列的初始化不一样,在初始化第一行或者第一列是如果前面已经有障碍了,那么后面的点都是不可达的,在更新dp[i][j]也是一样,如果[i][j]点是障碍,那么该点不可达,即dp[i][j]=0;
C++代码
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m=(int) obstacleGrid.size();
int n=(int) obstacleGrid[0].size();
vector<vector<int>> dp(m,vector<int>(n,0));
if(m==0||n==0)return 0;
for(int i=0;i<m;i++){
if(obstacleGrid[i][0]==0)dp[i][0]=1;
else break;
}
for(int i=0;i<n;i++){
if(obstacleGrid[0][i]==0)dp[0][i]=1;
break;
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
if(obstacleGrid[i][j]==0){
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
}
return dp[m-1][n-1];
}