动态规划-不同路径(I,II)

不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?

例如,上图是一个7 x 3 的网格。有多少可能的路径?

说明:m 和 n 的值均不超过 100。

示例 1:

输入: m = 3, n = 2
输出: 3


解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右

示例 2:

输入: m = 7, n = 3
输出: 28

 

解题思路
用dp[i][j]表示从[0][0]点到[i][j]点的不同路径有多少,那么dp[i][j]的不同路径数就是dp[i-1][j]向左走,和dp[i][j-1]向下走的路径之和,即dp[i][j]=dp[i-1][j]+dp[i][j-1]。在 第一行或者第一列只有一条路径,即dp[0][i]=1,dp[i][0]=1;

 

C++代码

int uniquePaths(int m, int n) {
    if(m==0||n==0)return 0;
    vector<vector<int>> dp(m,vector<int>(n,0));
    for(int i=0;i<m;i++){
        dp[i][0]=1;
    }
    for(int i=0;i<n;i++){
        dp[0][i]=1;
    }
    for(int i=1;i<m;i++){
        for(int j=1;j<n;j++){
            dp[i][j]=dp[i-1][j]+dp[i][j-1];
        }
    }
    return dp[m-1][n-1];
}

不同路径II
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

说明:m 和 n 的值均不超过 100。

示例 1:

输入:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

输出: 2


解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

解题思路
和“不同路径”一样,但是对于第一行和第一列的初始化不一样,在初始化第一行或者第一列是如果前面已经有障碍了,那么后面的点都是不可达的,在更新dp[i][j]也是一样,如果[i][j]点是障碍,那么该点不可达,即dp[i][j]=0;

C++代码
 

int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {

    int m=(int) obstacleGrid.size();
    int n=(int) obstacleGrid[0].size();
    vector<vector<int>> dp(m,vector<int>(n,0));
    if(m==0||n==0)return 0;

    for(int i=0;i<m;i++){
        if(obstacleGrid[i][0]==0)dp[i][0]=1;
        else break;
    }
    for(int i=0;i<n;i++){
        if(obstacleGrid[0][i]==0)dp[0][i]=1;
        break;
    }
    for(int i=1;i<m;i++){
        for(int j=1;j<n;j++){
            if(obstacleGrid[i][j]==0){
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
    } 
    return dp[m-1][n-1];
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值