6CCM226B Metric Spaces and Topology Summer 2023 Mock ExamWeb

Java Python 6CCM226B Metric Spaces and Topology

Summer 2023 Mock Exam

SECTION A

A 1.      Let X = R2 , α = (x1 , y1 ) ∈ R2 , β = (x2 , y2 ) ∈ R2  and consider the metrics

d1 (α,β) = |x1  − y1 | + |x2  − y2 |

d∞ (α,β) = max{|x1  − y1 | , |x2 − y2 |}

(i) Show that d∞  defines a metric on R2 .                                             [3 marks]

(ii) Show that d1  and d∞  are equivalent metrics on R2 .                      [3 marks]

(iii) Does σ(α,β) = |cos (d1 (α,β))| define a metric on R2 ?  Justify your answer with a proof or counterexample.         [3 marks]

A 2.        Let (X, τ ) be a topological space and d a metric on X.

(i) Define what it means for (X, τ ) to be Hausdorff.           [2 marks]

(ii) Define the metric topology on (X, d).                          [2 marks]

(iii) Prove that (X, d) is Hausdorff.                                     [4 marks]

A 3.         Let (X, τ ) be a topological space and A a non-empty subset of X.

(i) Define the subspace topology τA on A.                                             [2 marks]

(ii) Define what it means for a map f : A → X to be continuous.                          [2 marks]

(iii) Show that the inclusion map ι : A → X defined by ι(a) = a for all a ∈ A, is continuous.             [3 marks]

A 4.      Let X contain at least two points, and let (X,τ) be a topological space.

(i) Define what it means for X to be disconnected.                             [2 marks]

(ii) Show that the discrete topology σ = P(X) defines a topology on X .    [4 marks]

(iii) Show that (X,σ) is disconnected.                                                [4 marks]

A 5.      Consider the co-countable topology

τ = {U ⊆ N : N \ U is at most countable} ∪ {∅}

where N = {0, 1, 2, . . .}.

(i) Prove that τ is a topology on N.                                                [4 marks]

(ii)  Define what it means for x ∈ N to be a limit point of a set A ⊂ N. [2 marks]

(iii)  Show that if A ⊂ N then A contains all its limit points.           [4 marks]

Let ∼&nbs 6CCM226B Metric Spaces and Topology Summer 2023 Mock ExamWeb p;be the equivalence relation on N defined as x ∼ y if and only if x − y is divisible by 2.

(iv) Define the quotient topology τq  on N/∼ .                                    [2 marks]

(v)  Determine all the elements of τq .                                                 [4 marks]

SECTION B

B 6.      (i) (a) State what it means to say that xn  ∈ X , n ∈ N, is a  Cauchy sequence in the metric space (X, d).  

(b)  State what it means to say that the metric space (X, d) is complete.     [4 marks]

(ii) Let (X, d) be a complete metric space and let A be a closed subset of X . Show that the subspace (A,d) is complete.      [4 marks]  

(iii) State what it means to say that a map T : (X, d) → (X, d) is a contraction.  State, without proof, the contraction mapping theorem.           [5 marks]  

(iv) Show that the sequence

 

is convergent, and compute its limit.

Hint: Show that the sequence is given by iterating a suitable map T. [12 marks]

B 7.      (i) Let  (X,τ) be a topological space and let A ⊆ X .  State precisely what it means to say that

(a)  A is disconnected,   (b)   A is a non-trivial clopen set. 

[5 marks]

(ii) Show that an interval is a connected subset of R, equipped with the usual topology.                    [10 marks]

(iii) Let (A,τ) be a connected topological space and let f be a real-valued function on A with the property that for each a ∈ A there is a neighbourhood  Na of a such that f is constant on Na. Prove that f is constant on A. [10 marks]

B 8.      (i) State precisely what it means to say that:

(a) The topological space (X,τ) is compact. 

(b)  The metric space (X, d) is sequentially compact. 

(c)  The metric space (X, d) is bounded. 

(d)  The metric space (X, d) is totally bounded.                                 [7 marks]

(ii) Give an example of a metric space that has a closed and bounded subset, which is not compact.     [3 marks]

(iii) Prove that a compact metric space is sequentially compact.       [8 marks]

(iv) (1) Prove that, in a topological space, the union of two compact sets is compact.

(2)  Prove that, in a metric space, the intersection of two compact sets is compact         

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值