HDFS---数据存储

本文详细介绍了HDFS的体系架构,包括NameNode、DataNode和SecondaryNameNode的职责,以及它们如何协同工作来管理和存储数据。NameNode作为主节点,负责接收客户端请求并管理HDFS的元数据;DataNode负责存储实际的数据块;SecondaryNameNode则协助进行日志信息的合并,以保持HDFS系统的健康运行。
摘要由CSDN通过智能技术生成

HDFS的体系架构

NameNode:名称节点

1. 职责:
	- 是HDFS的主节点、管理员
	- 接受客户端(命令行、Java程序)的请求:创建目录、上传数据、下载数据、删除数据等
	- 管理和维护HDFS的维护和元信息
		日志文件(edits文件):记录的是客户端的所有操作,同时体现了HDFS的最新状态
				   edits文件是二进制文件
				   位置:$HADOOP_HOME/tmp/dfs/name/current,inprogress表示正在操作的日志文件
				   HDFS提供了一个日志查看器(edits viewer),把eidts文件转成文本格式xml
				   命令: hdfs oev -i edits_inprogress_xxx -o a.xml
		元信息文件(fsimage文件):记录的是数据块的位置信息和数据块的冗余信息
					也是二进制文件
					位置:
					HDFS提供了一个元信息查看器(image viewer),转换成txt或者xml文件
					命令:
					hdfs oiv -i fsimage_xxx -o b.xml
					没有体现HDFS的最新状态

DataNode:数据节点

职责:
1.按数据块保存数据库
1.x 64M
2.x 128M
3. 数据块:表现形式:就是一个文件以blk_开头的
4. 设置数据块冗余度原则:一般跟数据节点个数相同,不要超过3设置数据块冗余度原则:一般跟数据节点个数相同,不要超过3
5. Hadoop 3.x以前会造成存储空间的极大浪费,Hadoop 3.0新特性,增加了HDFS的纠删码技术,大大节约存储空间(节约一半)

SecondaryNameNode:第二名称节点

与NameNode没有任何相似性,
职责:
进行日志信息的合并

  1. 由于日志文件体现了最新信息,会越来越大
  2. 把日志信息写到fsimage文件中来,
  3. 然后日志文件就可以清空了
    合并什么时间发生:
    当HDFS发出检查点,checkpoint时
    检查点:理解成时间,或者标志,
    默认情况下,HDFS每隔60min产生一个checkpoint
    或者当edits文件超过64M,SecondaryNameNode就会去合并(拷贝,合并,写回NameNode)

待补充知识点
1)Spark中RDD的检查点:容错机制
2)Oracle中的检查点:会以最高优先级唤醒数据库的写进程,将数据写入yin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值