NER经典之作,2015年提出的BiLSTM-CRF序列标注模型解读。
Abstract
论文以LSTM为基础,对比LSTM、BiLSTM、CRF、LSTM-CRF和BiLSTM-CRF一系列序列标注模型,实验对比表明BiLSTM-CRF模型在序列标注任务中的极大优势(该模型在后续几年成为NER任务的标杆,几乎知道NER任务的人都有听说过BiLSTM-CRF,足以见其影响力)。模型名称(BiLSTM-CRF)直观显示了模型结构与优势,其中BiLSTM通过前向/后向传递的方式学习序列中某字符依赖的过去和将来的信息,CRF则考虑到标注序列的合理性。这些优势使得论文模型在当时取得SOTA结果。
Introduction
序列标注是NLP经典任务,包括词性标注POS、语义组块Chunking、命名实体识别NER等。传统的机器学习方法包括隐马尔科夫模型HMM、最大熵马尔可夫模型MEMMs和条件随机场CRF,神经网络方法CNN、RNN也可用来解决该问题。论文设计一系列LSTM模型对比实验,包括BiLSTM、LSTM-CRF和BiLSTM-CRF。其中经典的BiLSTM-CRF方法就是在该论文首次提出。
Models
论文该部分以NER任务为例,分5小节分别介绍LSTM、BiLSTM、CRF、LSTM-CRF和BiLSTM-CRF序列标注模型,读者用不着被这么多模型吓到,理解该部分的核心在于LSTM和CRF(如果你了解LSTM和CRF,直接看下面五张图即可了解该章节内容)。对LSTM和CRF不熟悉的推荐学习命名实体识别(NER):BiLSTM-CRF原理介绍+Pytorch_Tutorial代码解析,学习完后估计对论文该章节的内容不会再有疑问。


本文详细解读了2015年提出的BiLSTM-CRF模型,该模型是命名实体识别(NER)领域的经典之作。通过对LSTM、BiLSTM、CRF等模型的对比实验,展示了BiLSTM-CRF在序列标注任务中的显著优势。
最低0.47元/天 解锁文章
3万+

被折叠的 条评论
为什么被折叠?



