论文学习9-Bidirectional LSTM-CRF Models for Sequence Tagging(LSTM,BILSTM,LSTM-CRF,BILSTM-CRF


本篇论文介绍了LSTM网络、BI-LSTM网络、CRF网络、LSTM-CRF网络、BI-LSTM-CRF网络,比较将它们用于自然语言处理的性能与准确率。重点介绍了BI-LSTM-CRF网络。

1.Introduction

  • 序列标记
    • 包括词性标记(POS)、
    • 分块标记和
    • 命名实体识别(NER)
  • 本文以前
    • 统计模型
      • Hidden Markov Models (HMM),
      • Maximum entropy Markov models (MEMMs) (McCallum et al.,2000), and
      • Conditional Random Fields (CRF)(Lafferty et al., 2001)。
    • 神经网络
      • 基于卷积网络的模型(Collobert et al., 2011)
        • Conv-CRF等模型,因为它包含一个卷积网络和CRF层输出(这个词的句子级别loglikelihood (SSL)是用于原始论文)。
        • Conv-CRF模型产生了有前景的结果序列标记任务。
      • 在演讲语言理解社区,
        • 递归神经网络(Mesnil et al ., 2013;Yao et al ., 2014)和
        • 基于卷积网(Xu and Sarikaya, 2013)最近提出的模型。
      • 其他相关工作包括(Graves et al ., 2005;Graves et al ., 2013)提出了一个双向递归神经网络语音识别。
  • 贡献
    • 1)系统比较了上述模型在NLP标记数据集上的性能;
    • 2)首次将双向LSTM CRF (B
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值