本篇论文介绍了LSTM网络、BI-LSTM网络、CRF网络、LSTM-CRF网络、BI-LSTM-CRF网络,比较将它们用于自然语言处理的性能与准确率。重点介绍了BI-LSTM-CRF网络。
1.Introduction
- 序列标记
- 包括词性标记(POS)、
- 分块标记和
- 命名实体识别(NER)
- 本文以前
- 统计模型
- Hidden Markov Models (HMM),
- Maximum entropy Markov models (MEMMs) (McCallum et al.,2000), and
- Conditional Random Fields (CRF)(Lafferty et al., 2001)。
- 神经网络
- 基于卷积网络的模型(Collobert et al., 2011)
- Conv-CRF等模型,因为它包含一个卷积网络和CRF层输出(这个词的句子级别loglikelihood (SSL)是用于原始论文)。
- Conv-CRF模型产生了有前景的结果序列标记任务。
- 在演讲语言理解社区,
- 递归神经网络(Mesnil et al ., 2013;Yao et al ., 2014)和
- 基于卷积网(Xu and Sarikaya, 2013)最近提出的模型。
- 其他相关工作包括(Graves et al ., 2005;Graves et al ., 2013)提出了一个双向递归神经网络语音识别。
- 基于卷积网络的模型(Collobert et al., 2011)
- 统计模型
- 贡献
- 1)系统比较了上述模型在NLP标记数据集上的性能;
- 2)首次将双向LSTM CRF (B