自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(148)
  • 收藏
  • 关注

原创 overleaf,latex使用过程中记录(二)

在\maketitle后面加上,

2025-05-19 15:36:55 114

原创 gephi绘图

参考:如何在Gephi中正确的显示中文?Gephi绘制网络图初步探索gephi 节点标签 调节_图分析与可视化-从Gephi开始

2025-05-01 14:34:13 252

原创 neurips2025_latex

补充材料单独提交一个zip材料,上传代码评估质量,检查提交code的准则、模板等。使用\usepackage[nonatbib]{neurips_2025},其中:提交一篇PDF,包含了正文(9页),参考文献,checklist。添加bib文件,完整的方法已经修改好了。下载IEEEtran.bst,添加即可。为了保证严谨性和透明度,需要有。neurips模板修改。

2025-04-29 15:57:40 1006 2

原创 边缘损失函数

本质上是为了在模型学习过程中拉大某两类节点的评分差距,在差距不够时施加惩罚,是一种常见的对比性损失或排序损失思想。可以成为边缘排名损失(margin-based ranking loss),鼓励某类节点的评分高于另一类节点。,假设差距是0.5,则损失是0.2,假设差距是0.8,则损失是0,损失越来越小。,否则就回产生损失,损失大小就是未满足差距的部分,代表了正类与负类的差距,显然希望这个差距大于等于。,即正类的评分比负类高至少。

2025-04-20 13:48:46 538

原创 one class classification

在one class classificaiton中,仅仅只有一类的信息用于训练,其他类别的(outlier)信息是缺失的,即区分两个类别的边界线是通过仅有的一类数据的信息学习得到的。二分类中常用的BCE Loss,理解这里的Loss就是判断模型的好坏并纠正,对于错误的预测,应该返回高值,对于良好的预测,应该返回低值。利用已知部分正常节点来检测异常,即只利用一类正常节点来实现二分类,这是one-class的任务。

2025-04-19 15:07:18 123

原创 网络与信息安全基础知识

防火墙技术:包过滤防火墙、应用代理网关、状态检测技术。有链路加密、节点加密、端到端加密。

2025-04-15 22:00:33 102

原创 七大寻址方式

2025-04-13 22:16:51 136

原创 远程主机可能不符合glibc和libstdc++ VS Code服务器的先决条件

服务器中有个GLIBC库,VSCode>=1.86.0版本对 低于v2.28.0版本的GLIBC不再满足需求。回退到之前能够连接服务器的版本。我之前用的是January 2025 (version 1.97)这是因为我最近更新了vscode,

2025-04-08 22:12:28 380

原创 node.js版本管理

遇到了版本升级后,以前项目不兼容的问题。下载一个node.js的版本管理工具,,可以选择版本下载,我选择的1.11.1版本的。下载完成后点击安装,分别选择nvm安装目录和nodejs的安装目录,点击安装,例如我本机已经安装了v20版本,就会提示你已安装是否使用nvm管理这个版本。安装成功如图所示:进入cmd查看版本是否已安装成功。

2025-04-02 15:41:52 295

原创 智能体概述

智能体是指通过模拟特定场景下的人物或角色(希望这个 AI 员工有什么能力,你决定),主动思考与执行任务的智能助理,以完成特定任务或目标的一种 AI 应用方式。

2025-03-25 10:57:30 188

原创 八爪鱼采集器

配置合理规则采集数据。

2025-03-06 19:30:08 966

原创 low pass filtering / high pass filtering

在图神经网络(GNN)中,低通滤波(low-pass filtering)特性是指网络在学习图节点表示时,倾向于保留图结构中局部相似节点之间的信息,同时平滑掉图中的不相关信息。这种特性使得 GNN 能够捕捉到节点的局部结构特征,并且能够在信息传播过程中忽略掉远离当前节点的、噪声较多的部分。

2025-02-28 14:27:45 666

原创 Pycharm-Version: 2024.3.3导入conda环境

点击select existing->conda,选择地址为:anoconda/library/bin/conda.bat,就可以选择虚拟环境了。新增环境,点击add interpreter->add local interpreter。找到Project->python interpreter。打开一个新项目,点击File->Settings。

2025-02-25 13:00:25 577

原创 更换node版本

使用node.js官方安装程序,升级到v20.18.0。查看当前node版本。

2025-02-22 20:31:39 225

原创 【DiffGAD: A Diffusion-based Unsupervised Graph Anomaly Detector】

传统的无监督方法以重构为重点,对未标记数据的编码的潜在表示进行解码,通常无法捕获关键的判别性内容,导致异常检测不理想。DiffGAD的核心是一种全新的潜在空间学习范式,通过精心设计,使用判别内容来指导模型,从而提高模型的熟练程度。利用扩散采样向潜在空间注入判别性内容,并引入内容保存机制,在不同尺度上保留有价值的信息,显著提高了模型在有限时间和空间复杂度下识别异常的熟练程度。在6个大规模数据集上进行了评估,卓越性能。

2025-02-21 14:02:33 878

原创 stochastic differential equation

Stochastic Differential Equation,SDE,随机微分方程是常微分方程的扩展,其项是随机过程,解也是随机过程。形容的是一个随机变量的变动过程,也就是常微分方程加上一个白噪音项。随机过程函数本身的导数不可定义。SDE可用于模拟随机模型的各种行为,如股价、随机增长模型或受热涨落影响的物理系统。随机微分方程的概念最早以布朗运动的形式提出包含微分,解微分需要用到积分。

2025-02-17 16:48:36 1168

原创 枚举Enum用法

枚举非常适合用于定义错误状态码。通过枚举,可以将错误码集中管理,提高代码的可读性和可维护性。// 定义常见的错误状态码// 定义属性// 错误码// 错误信息// 构造函数// 获取错误码// 获取错误信息// 根据错误码查找对应的枚举实例// 遍历枚举常量进行查找。

2025-02-15 20:04:20 429

原创 Graph Anomaly Detection via Diffusion Enhanced Multi-View Contrastive Learning

忽略了对比学习中正负采样对的增强方法,会对模型的鲁棒性和准确性产生重大影响。该方法:联合优化基于扩散的增强模块和基于多视图对比学习的模块。基于扩散的增强模块,使用扩散模型并去噪得到增强的原始图,并将原始图重建损失作为异常检测标准之一。在多视图对比模块,有节点-节点,节点-子图,子图-子图三种对比视图,以更好识别结构空间中的异常。在6个基准数据集上进行了实验。

2025-02-15 16:52:20 728

原创 DeepSeek进阶

DeepSeek-R1是开源的推理模型,性能对其OpenAI-o1,可免费商用。DeepSeek在后训练阶段大规模使用了强化学习。DeepSeek还能完成常规绘图,例如SVG矢量图,Mermaid图表,React图表。

2025-02-14 21:33:07 263

原创 Java版本与JDK版本

Java版本指的Java语言和平台的版本,例如Java8、Java11、Java17等,每个版本会引入新特性、改进和修复。JDK(Java Development Kit)版本则是开发工具包,包含编译器、调试器等工具,通常与Java版本对应,例如JDK8对应Java8,JDK11对应Java11。

2025-02-08 17:06:54 351

原创 90.子集||

要求所有可能的子集,不能重复,因此对于相同的数字,要考虑去重,去重的方式就是通过排序,排序后相同的数字相邻,这样进行实现迭代时,若没有选择上一个数,,其当前数字与上一个数相同,则跳过当前生成的子集。递归完成,撤销当前选择,继续其他选择。

2025-02-06 23:19:16 160

原创 使用DeepSeek R1 + 了解部署

R1模型,推理模型。

2025-02-05 21:28:09 337

原创 680.验证回文串||

上面的分析存在漏洞,当l和r所处位置不能构成回文串时,有两种做法,一种是删除l位置的字符,则l++,另一种是删除r位置的字符则r–,当这两种做法至少有一个是回文串则能够继续进行。这里需要涉及删除,因此使用双指针,l和r,假设l不等于r,则l++,同时记录删除字符的个数cnt–,如果第二次遇到l不等于r,则不能成为一个回文串,反之则可以。最多删除一个字符使其成为回文串,首先根据回文串的特点,即两边互相对应。

2025-02-03 23:42:55 231

原创 我的创作纪念日

当然新的一年希望自己可以多创作一些质量更好的文章出来和大家一起分享。也是想和大家一起进步,记录下自己遇到的问题和学习进程。发现好记性不如烂笔头,多记一点是没有坏处的。

2025-02-03 23:06:59 394

原创 解决需要用到1.x版本的tensorflow环境的问题

首先在linux服务器上安装anoconda,可以直接下载.sh安装包,然后上传到服务器,使用bash Anxxx.sh,执行安装命令。,这是因为tf.random_uniform在tf2.0改名字了,使用tf.random.uniform代替。此外,nunmpy包可能附带安装最新的,需要降级一下,例如我安装的是numpy==1.23.3。是tensorflow环境下运行的,因此需要配置tensorflow环境。由于CUDA版本已经很高了,因此安装tensorflow2.x以上的即可,

2024-12-22 19:43:36 475

原创 Java、python标识符命名规范

驼峰命名:

2024-12-08 18:43:00 238

原创 idea中新建一个空项目

经查,这是因为java编译器中默认使用的JD版本太低导致的。在文件->设置中切换即可,如下图所示,切换为较高点的,我这里切换为。目的,为了在同一个目录下有多个小的项目:使用IDE为idea2022。

2024-12-08 18:25:26 645

原创 反射机制了解

Reflection被视为动态语言的关键。允许程序在运行期间借助Reflection API 取得任何类的内部信息,并能直接操作任何对象的内部属性和方法。例如下面的案例,获取类的属性和方法,两种都是可行的。@Test// 创建Person类的实例// 调用Person类的属性和方法// 调用属性// 调用方法/*使用反射完成上述的操作*/@Test// 调用构造器方法// 调用属性,先获取age属性。

2024-11-30 22:31:50 491

原创 github浏览技巧-github1s

在浏览github中感兴趣内容时,想要查看代码文件,还需要下载或者clone,只需要在地址中。,即可方便的查看目录及文件内容了。

2024-11-29 23:02:44 326

原创 A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions

图表示在真实世界中普遍存在的相互关联的结构。有效的图分析,例如图学习方法,使用户能够从图数据中获得深刻的见解,支持各种任务,包括节点分类node classification、链接预测link prediction。然而,这些方法往往存在数据不平衡问题data imbalance,这是图数据中一个常见的问题,即某些部分拥有丰富的数据,而另一些部分则缺乏数据,从而导致有偏差的学习结果。这就需要新兴领域:即图上的不平衡学习,目的是纠正这些数据分布偏差,以获得更准确和更具代表性的学习结果。

2024-11-27 16:39:38 862

原创 sklearn.ensemble

这是一个集成方法,通过组合多个单一模型来构建更强大的预测模型的技术。核心思想是“集体智慧”,即多个模型的组合通常比单个模型的性能更优。两个著名的方法就是梯度提升树gradient-boosted trees和随机森林random forest。

2024-11-27 14:37:27 241

原创 java中的最小堆

最小堆minHeap指的级别n的每个节点存储的值小于或等于级别n+1的子节点的值。因此,根就存储了其中最小的值。注意节点的值与其他兄弟节点的值之间没有必然关系。

2024-11-24 23:34:51 308

原创 java网络编程

java实现了一个跨平台的网络库,程序员面对的是一个统一的网络编程环境。即里面有类包,直接调用就可以了。

2024-11-16 22:38:26 932

原创 Graph-based anomaly detection

我们使用1999年KDD Cup网络入侵数据集[9]测试了我们的异常检测方法。数据由连接记录组成,每条记录都被标记为“正常”或37种不同的攻击类型之一。每条记录包含41个描述连接的特征(持续时间、协议类型、数据字节数等);这些特征有些是连续的,有些是离散的。在最初的比赛中,数据集被分成两部分:训练数据和测试数据。参与者能够用训练数据训练他们的检测器,然后根据他们在测试数据上的表现进行判断。由于我们的方法涉及无监督学习而不是监督学习(即不涉及训练),因此我们只关注测试数据。

2024-10-31 14:15:22 695

原创 提问GPT

AI模型即采用深度学习技术的人工神经网络。你不会被AI取代,而是会被熟练运用AI的人取代。

2024-10-29 17:11:16 727

原创 安装pygod

如果pip不是最新的,可以使用下述命令检查并安装最新的pip。

2024-10-28 22:17:26 350

原创 FileReader和FileWriter

使用read()方法读取单个字符,下面是如何修改使程序性能更好的过程。但是遇到异常就抛出了,无法进行到close(),因此使用try-catch-finally方法。在读取显示这里,还可以改进,通过每次读取多个字符存到字符数组中,较少与磁盘交互的次数。

2024-10-26 16:25:23 340

原创 File类与IO流

File类的对象,通常是作为IO流操作的文件的端点出现的,即File类的对象作为参数传递到IO流相关类的构造器中。java程序中,对输入输出的操作以流stream的方式进行,IO技术用于处理设备之间的数据传输。File类中并没有涉及到对文件内容的读写操作,要实现文件内容的读写,就需要IO流。:返回一个String数组,表示该File目录中的所有子文件或目录。:返回一个File数组,表示该File目录中的所有的子文件或目录。File类的一个对象,对应了一个文件或一个文件目录、文件夹。以程序或内存的角度来看,

2024-10-23 15:17:13 592

原创 MSE Loss、BCE Loss

xand targety即均方误差,回归问题解决的是对具体数值的预测,使用于回归问题下的损失函数。使用MSE损失函数,受离群点的影响较大。

2024-10-22 19:07:39 617

原创 理解注意力

注意力计算过程中,会首先根据键和查询进行注意力计算,得到对应注意力分数,理解为键和查询的相关度,越相关则对应分数越高。再经过softmax映射为0,1之间,得到注意力权重。基本过程是query和键在注意力汇聚层中经过计算,得到了对应的注意力权重,再通过这个权重,对应键的值在输出就会占不同比例,从而实现对值的选择倾向。自注意力本质是计算序列中每个元素与序列中其他元素之间的相似性。查询、键、值都来自同一个地方,称为自注意力self-attention。了解查询query,键key,值value。

2024-10-22 14:02:07 244

《Android Studio 应用程序设计》,(第2版,微课版张思民),我们教学参考用的这本书,MyApplication包含了7,8个章节的安卓应开发案例和和实现

《Android Studio 应用程序设计》,(第2版,微课版张思民),我们教学参考用的这本书,MyApplication包含了7,8个章节的安卓应开发案例和和实现。

2024-11-29

信号与系统期末复习试题(全)

包含,选择、填空、判断、计算题。提供参考答案

2024-11-13

信息素养大赛,信息素养相关试题

包含答案以及答案解析

2024-11-13

疫情大数据分析系统实现

Python实现

2024-06-14

强化学习Simple-Reinforcement-Learning-main

强化学习相关的课程:包含无状态、马尔可夫决策、动态规划、时序部分、DQN、策略梯度等算法python实现。 运行环境: python=3.9 pytorch=1.12.1 gym=0.26.2 2023年5月5日更新:gym版本升级到0.26.2, python版本升级到3.9, torch升级到1.12.1

2024-06-14

计算机视觉,课后习题部分解答(章毓晋)

成理包括课后习题,课后学习,期末复习

2024-06-14

安卓实践:计算器、简单商城

安卓的四大组件:活动(Activity)、服务(Service)、广播接收器(Broadcast Receiver)和内容提供器(Content Provider),对于理解应用程序的结构和工作方式非常重要。安卓应用的界面设计和布局。如何通过编写Java代码和使用安卓的API来实现应用程序的功能。学习了如何处理用户输入、访问网络、读写本地数据库等。从简单的计算器到复杂的社交媒体应用。调试和测试安卓应用程序。使用Android Studio这样的集成开发环境进行项目的创建、编码和调试。对于课程中的项目实践,可以更好地理解了安卓开发的实际应用和挑战。通过实际动手编写代码和解决问题,不仅巩固了所学的知识,还培养了解决问题和团队合作的能力。

2024-06-14

python车牌识别系统

基于opencv的python车牌识别系统,可毕设

2024-06-14

用 tensor MF 实现顾客与餐馆推荐

Restaurant & consumer data for context-aware recommendation. The tasks were to generate a top-n list of venue according to the consumer preferences at the given time. 二阶的因子分解机

2024-06-14

数字图像处理(冈萨雷斯第四版)期末复习终结版

成都理工大学宜宾校区小伙伴准备数字图像处理期末复习的,小编已经帮你整理好考点资源了,快来看看!

2024-06-14

word中使用的Aurora插件

LaTeX 是一种广泛用于排版科学和技术文档的标记语言,它在数学、物理学、计算机科学等领域广泛应用。Aurora插件使用户可以在Microsoft Office中轻松地插入 LaTeX 公式,这样用户就可以利用 LaTeX 的强大排版功能来创建复杂的数学和科学公式,而无需离开Office环境。这对于需要频繁插入公式的学术、科研、工程等领域的用户来说是非常方便的。

2024-03-28

vscode安装文档,按步骤安装

vscode安装文档,按步骤安装

2024-02-15

python+django前后端智慧医疗系统

该系统包括健康档案管理、健康咨询管理、用户管理、论坛管理、健康资讯管理、系统管理六大功能模块,主要实现了个人、家庭健康档案的信息收集和查询、医生网络会诊、论坛信息共享、发布健康知识等功能。 可作为毕设参考,界面新颖。

2024-02-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除