- 博客(148)
- 收藏
- 关注
原创 neurips2025_latex
补充材料单独提交一个zip材料,上传代码评估质量,检查提交code的准则、模板等。使用\usepackage[nonatbib]{neurips_2025},其中:提交一篇PDF,包含了正文(9页),参考文献,checklist。添加bib文件,完整的方法已经修改好了。下载IEEEtran.bst,添加即可。为了保证严谨性和透明度,需要有。neurips模板修改。
2025-04-29 15:57:40
1006
2
原创 边缘损失函数
本质上是为了在模型学习过程中拉大某两类节点的评分差距,在差距不够时施加惩罚,是一种常见的对比性损失或排序损失思想。可以成为边缘排名损失(margin-based ranking loss),鼓励某类节点的评分高于另一类节点。,假设差距是0.5,则损失是0.2,假设差距是0.8,则损失是0,损失越来越小。,否则就回产生损失,损失大小就是未满足差距的部分,代表了正类与负类的差距,显然希望这个差距大于等于。,即正类的评分比负类高至少。
2025-04-20 13:48:46
538
原创 one class classification
在one class classificaiton中,仅仅只有一类的信息用于训练,其他类别的(outlier)信息是缺失的,即区分两个类别的边界线是通过仅有的一类数据的信息学习得到的。二分类中常用的BCE Loss,理解这里的Loss就是判断模型的好坏并纠正,对于错误的预测,应该返回高值,对于良好的预测,应该返回低值。利用已知部分正常节点来检测异常,即只利用一类正常节点来实现二分类,这是one-class的任务。
2025-04-19 15:07:18
123
原创 远程主机可能不符合glibc和libstdc++ VS Code服务器的先决条件
服务器中有个GLIBC库,VSCode>=1.86.0版本对 低于v2.28.0版本的GLIBC不再满足需求。回退到之前能够连接服务器的版本。我之前用的是January 2025 (version 1.97)这是因为我最近更新了vscode,
2025-04-08 22:12:28
380
原创 node.js版本管理
遇到了版本升级后,以前项目不兼容的问题。下载一个node.js的版本管理工具,,可以选择版本下载,我选择的1.11.1版本的。下载完成后点击安装,分别选择nvm安装目录和nodejs的安装目录,点击安装,例如我本机已经安装了v20版本,就会提示你已安装是否使用nvm管理这个版本。安装成功如图所示:进入cmd查看版本是否已安装成功。
2025-04-02 15:41:52
295
原创 智能体概述
智能体是指通过模拟特定场景下的人物或角色(希望这个 AI 员工有什么能力,你决定),主动思考与执行任务的智能助理,以完成特定任务或目标的一种 AI 应用方式。
2025-03-25 10:57:30
188
原创 low pass filtering / high pass filtering
在图神经网络(GNN)中,低通滤波(low-pass filtering)特性是指网络在学习图节点表示时,倾向于保留图结构中局部相似节点之间的信息,同时平滑掉图中的不相关信息。这种特性使得 GNN 能够捕捉到节点的局部结构特征,并且能够在信息传播过程中忽略掉远离当前节点的、噪声较多的部分。
2025-02-28 14:27:45
666
原创 Pycharm-Version: 2024.3.3导入conda环境
点击select existing->conda,选择地址为:anoconda/library/bin/conda.bat,就可以选择虚拟环境了。新增环境,点击add interpreter->add local interpreter。找到Project->python interpreter。打开一个新项目,点击File->Settings。
2025-02-25 13:00:25
577
原创 【DiffGAD: A Diffusion-based Unsupervised Graph Anomaly Detector】
传统的无监督方法以重构为重点,对未标记数据的编码的潜在表示进行解码,通常无法捕获关键的判别性内容,导致异常检测不理想。DiffGAD的核心是一种全新的潜在空间学习范式,通过精心设计,使用判别内容来指导模型,从而提高模型的熟练程度。利用扩散采样向潜在空间注入判别性内容,并引入内容保存机制,在不同尺度上保留有价值的信息,显著提高了模型在有限时间和空间复杂度下识别异常的熟练程度。在6个大规模数据集上进行了评估,卓越性能。
2025-02-21 14:02:33
878
原创 stochastic differential equation
Stochastic Differential Equation,SDE,随机微分方程是常微分方程的扩展,其项是随机过程,解也是随机过程。形容的是一个随机变量的变动过程,也就是常微分方程加上一个白噪音项。随机过程函数本身的导数不可定义。SDE可用于模拟随机模型的各种行为,如股价、随机增长模型或受热涨落影响的物理系统。随机微分方程的概念最早以布朗运动的形式提出包含微分,解微分需要用到积分。
2025-02-17 16:48:36
1168
原创 枚举Enum用法
枚举非常适合用于定义错误状态码。通过枚举,可以将错误码集中管理,提高代码的可读性和可维护性。// 定义常见的错误状态码// 定义属性// 错误码// 错误信息// 构造函数// 获取错误码// 获取错误信息// 根据错误码查找对应的枚举实例// 遍历枚举常量进行查找。
2025-02-15 20:04:20
429
原创 Graph Anomaly Detection via Diffusion Enhanced Multi-View Contrastive Learning
忽略了对比学习中正负采样对的增强方法,会对模型的鲁棒性和准确性产生重大影响。该方法:联合优化基于扩散的增强模块和基于多视图对比学习的模块。基于扩散的增强模块,使用扩散模型并去噪得到增强的原始图,并将原始图重建损失作为异常检测标准之一。在多视图对比模块,有节点-节点,节点-子图,子图-子图三种对比视图,以更好识别结构空间中的异常。在6个基准数据集上进行了实验。
2025-02-15 16:52:20
728
原创 DeepSeek进阶
DeepSeek-R1是开源的推理模型,性能对其OpenAI-o1,可免费商用。DeepSeek在后训练阶段大规模使用了强化学习。DeepSeek还能完成常规绘图,例如SVG矢量图,Mermaid图表,React图表。
2025-02-14 21:33:07
263
原创 Java版本与JDK版本
Java版本指的Java语言和平台的版本,例如Java8、Java11、Java17等,每个版本会引入新特性、改进和修复。JDK(Java Development Kit)版本则是开发工具包,包含编译器、调试器等工具,通常与Java版本对应,例如JDK8对应Java8,JDK11对应Java11。
2025-02-08 17:06:54
351
原创 90.子集||
要求所有可能的子集,不能重复,因此对于相同的数字,要考虑去重,去重的方式就是通过排序,排序后相同的数字相邻,这样进行实现迭代时,若没有选择上一个数,,其当前数字与上一个数相同,则跳过当前生成的子集。递归完成,撤销当前选择,继续其他选择。
2025-02-06 23:19:16
160
原创 680.验证回文串||
上面的分析存在漏洞,当l和r所处位置不能构成回文串时,有两种做法,一种是删除l位置的字符,则l++,另一种是删除r位置的字符则r–,当这两种做法至少有一个是回文串则能够继续进行。这里需要涉及删除,因此使用双指针,l和r,假设l不等于r,则l++,同时记录删除字符的个数cnt–,如果第二次遇到l不等于r,则不能成为一个回文串,反之则可以。最多删除一个字符使其成为回文串,首先根据回文串的特点,即两边互相对应。
2025-02-03 23:42:55
231
原创 我的创作纪念日
当然新的一年希望自己可以多创作一些质量更好的文章出来和大家一起分享。也是想和大家一起进步,记录下自己遇到的问题和学习进程。发现好记性不如烂笔头,多记一点是没有坏处的。
2025-02-03 23:06:59
394
原创 解决需要用到1.x版本的tensorflow环境的问题
首先在linux服务器上安装anoconda,可以直接下载.sh安装包,然后上传到服务器,使用bash Anxxx.sh,执行安装命令。,这是因为tf.random_uniform在tf2.0改名字了,使用tf.random.uniform代替。此外,nunmpy包可能附带安装最新的,需要降级一下,例如我安装的是numpy==1.23.3。是tensorflow环境下运行的,因此需要配置tensorflow环境。由于CUDA版本已经很高了,因此安装tensorflow2.x以上的即可,
2024-12-22 19:43:36
475
原创 idea中新建一个空项目
经查,这是因为java编译器中默认使用的JD版本太低导致的。在文件->设置中切换即可,如下图所示,切换为较高点的,我这里切换为。目的,为了在同一个目录下有多个小的项目:使用IDE为idea2022。
2024-12-08 18:25:26
645
原创 反射机制了解
Reflection被视为动态语言的关键。允许程序在运行期间借助Reflection API 取得任何类的内部信息,并能直接操作任何对象的内部属性和方法。例如下面的案例,获取类的属性和方法,两种都是可行的。@Test// 创建Person类的实例// 调用Person类的属性和方法// 调用属性// 调用方法/*使用反射完成上述的操作*/@Test// 调用构造器方法// 调用属性,先获取age属性。
2024-11-30 22:31:50
491
原创 github浏览技巧-github1s
在浏览github中感兴趣内容时,想要查看代码文件,还需要下载或者clone,只需要在地址中。,即可方便的查看目录及文件内容了。
2024-11-29 23:02:44
326
原创 A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions
图表示在真实世界中普遍存在的相互关联的结构。有效的图分析,例如图学习方法,使用户能够从图数据中获得深刻的见解,支持各种任务,包括节点分类node classification、链接预测link prediction。然而,这些方法往往存在数据不平衡问题data imbalance,这是图数据中一个常见的问题,即某些部分拥有丰富的数据,而另一些部分则缺乏数据,从而导致有偏差的学习结果。这就需要新兴领域:即图上的不平衡学习,目的是纠正这些数据分布偏差,以获得更准确和更具代表性的学习结果。
2024-11-27 16:39:38
862
原创 sklearn.ensemble
这是一个集成方法,通过组合多个单一模型来构建更强大的预测模型的技术。核心思想是“集体智慧”,即多个模型的组合通常比单个模型的性能更优。两个著名的方法就是梯度提升树gradient-boosted trees和随机森林random forest。
2024-11-27 14:37:27
241
原创 java中的最小堆
最小堆minHeap指的级别n的每个节点存储的值小于或等于级别n+1的子节点的值。因此,根就存储了其中最小的值。注意节点的值与其他兄弟节点的值之间没有必然关系。
2024-11-24 23:34:51
308
原创 Graph-based anomaly detection
我们使用1999年KDD Cup网络入侵数据集[9]测试了我们的异常检测方法。数据由连接记录组成,每条记录都被标记为“正常”或37种不同的攻击类型之一。每条记录包含41个描述连接的特征(持续时间、协议类型、数据字节数等);这些特征有些是连续的,有些是离散的。在最初的比赛中,数据集被分成两部分:训练数据和测试数据。参与者能够用训练数据训练他们的检测器,然后根据他们在测试数据上的表现进行判断。由于我们的方法涉及无监督学习而不是监督学习(即不涉及训练),因此我们只关注测试数据。
2024-10-31 14:15:22
695
原创 FileReader和FileWriter
使用read()方法读取单个字符,下面是如何修改使程序性能更好的过程。但是遇到异常就抛出了,无法进行到close(),因此使用try-catch-finally方法。在读取显示这里,还可以改进,通过每次读取多个字符存到字符数组中,较少与磁盘交互的次数。
2024-10-26 16:25:23
340
原创 File类与IO流
File类的对象,通常是作为IO流操作的文件的端点出现的,即File类的对象作为参数传递到IO流相关类的构造器中。java程序中,对输入输出的操作以流stream的方式进行,IO技术用于处理设备之间的数据传输。File类中并没有涉及到对文件内容的读写操作,要实现文件内容的读写,就需要IO流。:返回一个String数组,表示该File目录中的所有子文件或目录。:返回一个File数组,表示该File目录中的所有的子文件或目录。File类的一个对象,对应了一个文件或一个文件目录、文件夹。以程序或内存的角度来看,
2024-10-23 15:17:13
592
原创 MSE Loss、BCE Loss
xand targety即均方误差,回归问题解决的是对具体数值的预测,使用于回归问题下的损失函数。使用MSE损失函数,受离群点的影响较大。
2024-10-22 19:07:39
617
原创 理解注意力
注意力计算过程中,会首先根据键和查询进行注意力计算,得到对应注意力分数,理解为键和查询的相关度,越相关则对应分数越高。再经过softmax映射为0,1之间,得到注意力权重。基本过程是query和键在注意力汇聚层中经过计算,得到了对应的注意力权重,再通过这个权重,对应键的值在输出就会占不同比例,从而实现对值的选择倾向。自注意力本质是计算序列中每个元素与序列中其他元素之间的相似性。查询、键、值都来自同一个地方,称为自注意力self-attention。了解查询query,键key,值value。
2024-10-22 14:02:07
244
《Android Studio 应用程序设计》,(第2版,微课版张思民),我们教学参考用的这本书,MyApplication包含了7,8个章节的安卓应开发案例和和实现
2024-11-29
强化学习Simple-Reinforcement-Learning-main
2024-06-14
安卓实践:计算器、简单商城
2024-06-14
用 tensor MF 实现顾客与餐馆推荐
2024-06-14
word中使用的Aurora插件
2024-03-28
python+django前后端智慧医疗系统
2024-02-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人