简介
滚动数组主要是对空间复杂度进行优化,可用在动态规划中
分类
- 对一维数组优化
- 对二维数组优化
一维
// 以斐波那契数列为例
// 未优化之前
int[] dp = new int[m];
dp[0]=nums[0];
dp[1]=nums[1];
for (int i=2;i<m;i++){
dp[i]=dp[i-1]+dp[i-2];
}
// 可以发现 dp[i],之前前面两个状态有关
int[] dp = new int[2];
dp[0]=nums[0];
dp[1]=nums[1];
for (int i=2;i<m;i++){
dp[i]=dp[0]+dp[1];
dp[0]=dp[1];
dp[1]=dp[i];
}
二维
描述 :我们求dp[i][j],一行一行的求,假如要求dp[2][2]=6,只需要dp[2][1]=3,和dp[1][2]=3,但是求完之后,dp[1][2]=3 用不到啦,所以就可以用 新值dp[2][2] 覆盖,所以我们只需要一行这么大的数组就可以完成。
// 原来
for (int i=1;i<n;i++){
for(int j=1;j<m;j++){
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
// 现在
int[] dp= new int[m]; // m 表示列数
for (int i=1;i<n;i++){
for(int j=1;j<m;j++){
dp[j]+=dp[j-1]; // 加上 上面的和左侧的
}
}