Batch Norm、Layer Norm
batch norm:每一batch的样本具有相同的均值和方差我们在对数据训练之前会对数据集进行归一化,归一化的目的归一化的目的就是使得预处理的数据被限定在一定的范围内(比如[0,1]或者[-1,1]),从而消除奇异样本数据导致的不良影响。虽然输入层的数据,已经归一化,后面网络每一层的输入数据的分布一直在发生变化,前面层训练参数的更新将导致后面层输入数据分布的变化,必然会引起后面每一层输入数据分布的改变。而且,网络前面几层微小的改变,后面几层就会逐步把这种改变累积放大。训练过程中网络中间层数据分布的改.
转载
2020-05-16 10:36:15 ·
1474 阅读 ·
0 评论