Deeper cascaded peak-piloted network for weak expression recognition论文笔记

本文介绍了DCPN(Deeper Cascaded Peak-piloted Network),一种用于微表情识别的深度学习方法。通过级联微调的集成训练,DCPN能更精确地捕捉表情细节,提升弱表情识别性能。网络结构基于inception-w,包含inception-a、b、c三种初始化结构及还原模块,并采用三级级联框架,有效应对训练深度网络时的梯度消失问题。
摘要由CSDN通过智能技术生成

1、三个问题

   1.解决什么问题?

   人脸的微表请识别

   2.用了什么方法解决?

  (1)DCPN(Deeper Cascaded Peak-piloted Network)使用了一个更深入、更大的网络,可以更精确地捕捉表达式的细微细节,从而在弱表达式识别中显示出更好的性能。

 (2) 防止扩大的网络架构过度配置,提出了一种级联微调的新的集成训练方法。 

3.效果如何?

DCPN的主要优点是提高了捕捉关键和细微细节的能力,明显提高了弱表达式的识别性能。

2、总体框架

在训练过程中,DCPN将图像序列作为输入。这个图像序列通过预先在ImageNet数据集上进行了训练的网络,然后针对面部表情识别进行了微调。在网络之后,它分为两部分:峰值表达式和非峰值表达式。这两个部分被用作新的输入来再次对网络进行微调。这种级联优化的集成训练方法集成了两个共享相同参数的相同网络,然后对网络参数进行两次优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值