1、三个问题
1.解决什么问题?
人脸的微表请识别
2.用了什么方法解决?
(1)DCPN(Deeper Cascaded Peak-piloted Network)使用了一个更深入、更大的网络,可以更精确地捕捉表达式的细微细节,从而在弱表达式识别中显示出更好的性能。
(2) 防止扩大的网络架构过度配置,提出了一种级联微调的新的集成训练方法。
3.效果如何?
DCPN的主要优点是提高了捕捉关键和细微细节的能力,明显提高了弱表达式的识别性能。
2、总体框架
在训练过程中,DCPN将图像序列作为输入。这个图像序列通过预先在ImageNet数据集上进行了训练的网络,然后针对面部表情识别进行了微调。在网络之后,它分为两部分:峰值表达式和非峰值表达式。这两个部分被用作新的输入来再次对网络进行微调。这种级联优化的集成训练方法集成了两个共享相同参数的相同网络,然后对网络参数进行两次优化。