面试准备
missyang99
这个作者很懒,什么都没留下…
展开
-
面试准备-决策树
决策树的基本原理:决策树是一种自上而下,对样本数据进行树形分类的过程,一棵决策树包含一个根节点内部节点和叶节点。其中每个内部结点表示一个特征或属性,叶结点表示类别。顶部根结点开始 所有样本聚集在一起, 经过根结点的划分 ,样本被分到不同的子结点中再根据子结点的特征进一步划分,直至所有样本都被归到某一个类别(即叶结点)中。决策树三要素:特征选择,决策树生成,剪枝 1、特征选择:从训练数据中众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准,从而衍生出不同的决策树算法原创 2020-09-04 19:23:23 · 561 阅读 · 0 评论 -
面试准备-线性回归
线性回归:1什么是线性回归:线性:两个变量之间的关系是一次函数关系的——图象是直线,叫做线性。回归:为了能够得到真实值,无限次的进行测量,最后通过这些测量数据计算回归到真实值,这就是回归的由来。对大量的观测数据进行处理,从而得到比较符合事物内部规律的数学表达式。也就是说寻找到数据与数据之间的规律所在,从而就可以模拟出结果,也就是对结果进行预测。解决的就是通过已知的数据得到未知的结果。例如:对房价的预测、判断信用评价、电影票房预估等。损失函数:最小均方误差(试图找到一条直线,使所有样本到直线的欧式距原创 2020-09-02 19:54:49 · 263 阅读 · 0 评论 -
面试准备——迭代器和生成器
https://zhuanlan.zhihu.com/p/84548471https://www.runoob.com/python3/python3-iterator-generator.htmlhttps://taizilongxu.gitbooks.io/stackoverflow-about-python/content/part/1.html迭代器:迭代是Python最强大的功能之一,是访问集合元素的一种方式。迭代器是一个可以记住遍历的位置的对象。迭代器对象从集合的第一个元素开始访问,转载 2020-08-19 20:52:51 · 259 阅读 · 0 评论 -
面试准备-python装饰器
该博客主要是借鉴了别人的博客,算是一篇读书笔记什么是闭包:在计算机科学中,闭包(英语:Closure),又称词法闭包(Lexical Closure)或函数闭包(function closures),是引用了自由变量的函数。这个被引用的自由变量将和这个函数一同存在,即使已经离开了创造它的环境也不例外。# print_msg是外围函数def print_msg(): msg = "I'm closure" # printer是嵌套函数 def printer():转载 2020-08-19 16:47:12 · 226 阅读 · 0 评论 -
面试准备——Batch normalization
什么是批归一化?思想转载 2020-08-11 14:30:35 · 217 阅读 · 0 评论 -
逻辑回归的一些问题——面试准备
逻辑回归的介绍https://blog.csdn.net/weixin_39445556/article/details/83930186lr和svm的区别https://www.cnblogs.com/zhizhan/p/5038747.html添加链接描述原创 2020-07-19 11:23:53 · 290 阅读 · 0 评论 -
特征工程-面试准备
特征归一化1.为什么需要对数值类型的特征做归一化?( 1 )线性函数归一化(Min-Max Scaling) 它对原始数据进行统性变换,使结果映射到[0,1 ]的范围,实现对原始数据的等比缩放。归一化公式如下( 2)零均值归一化( Z-Score Normalization )当数据(x)按均值(μ)中心化后,再按标准差(σ)缩放,数据就会服从为均值为0,方差为1的正态分布(即标准正态分布),而这个过程,就叫做数据标准化(Standardization,又称Z-score normalizati原创 2020-05-14 11:26:54 · 186 阅读 · 0 评论