pandas中concatenate和combine_first的用法

本文详细介绍了如何使用Pandas和NumPy进行高效的数据处理,包括数据拼接(concatenate)、填充(combine_first)等核心功能。通过具体实例展示了如何操作Series和DataFrame,以及如何利用这些工具进行数据填充和整合。
摘要由CSDN通过智能技术生成

concatenate主要作用是拼接series和dataframe的数据。
combine_first可以做来填充数据。
其中numpy和panads中都有concatenate()方法,如:np.concatenate([arr1, arr2])、pd.concat([s1, s2])

Series类型可以使用 s2 中的数值来填充 s1,如:s1.combine_first(s2)
Dataframe类型同样可以使用 df2 中的数组来填充 df1, 如:df1.combine_first(df2)

import numpy as np
import pandas as pd
from pandas import Series, DataFrame

# 设置一个随机种子,方便调试
np.random.seed(666)

# Series
arr1 = np.arange(9).reshape(3, 3)
arr2 = np.arange(9).reshape(3, 3)

# numpy的 concatenate 用法
print(np.concatenate([arr1, arr2]))
'''
[[0 1 2]
 [3 4 5]
 [6 7 8]
 [0 1 2]
 [3 4 5]
 [6 7 8]]
'''

print(np.concatenate([arr1, arr2], axis=1))
'''
[[0 1 2 0 1 2]
 [3 4 5 3 4 5]
 [6 7 8 6 7 8]]
'''


s1 = Series([1, 2, 3], index=['A', 'B', 'C'])
s2 = Series([4, 5], index=['E', 'F'])
# 可以看出和numpy的效果一样
print(pd.concat([s1, s2]))
'''
A    1
B    2
C    3
E    4
F    5
dtype: int64
'''
# 用法和 np 一样 axis = 1, 等于增加了一列
print(pd.concat([s1, s2], axis=1))
# 但是,返回的是一个 <class 'pandas.core.frame.DataFrame'>
print(type(pd.concat([s1, s2], axis=1)))
'''
     0    1
A  1.0  NaN
B  2.0  NaN
C  3.0  NaN
E  NaN  4.0
F  NaN  5.0
'''


df1 = DataFrame(np.random.randn(4, 3), columns=['X', 'Y', 'Z'])
print(df1)
'''
          X         Y         Z
0  0.824188  0.479966  1.173468
1  0.909048 -0.571721 -0.109497
2  0.019028 -0.943761  0.640573
3 -0.786443  0.608870 -0.931012
'''

df2 = DataFrame(np.random.randn(3, 3), columns=['X', 'Y', 'A'])
print(df2)
'''
          X         Y         A
0  0.978222 -0.736918 -0.298733
1 -0.460587 -1.088793 -0.575771
2 -1.682901  0.229185 -1.756625
'''

print(pd.concat([df1, df2]))
'''
          A         X         Y         Z
0       NaN  0.824188  0.479966  1.173468
1       NaN  0.909048 -0.571721 -0.109497
2       NaN  0.019028 -0.943761  0.640573
3       NaN -0.786443  0.608870 -0.931012
0 -0.298733  0.978222 -0.736918       NaN
1 -0.575771 -0.460587 -1.088793       NaN
2 -1.756625 -1.682901  0.229185       NaN
'''

# combine

s1 = Series([2, np.nan, 4, np.nan], index=['A', 'B', 'C', 'D'])
s2 = Series([1, 2, 3, 4], index=['A', 'B', 'C', 'D'])

# 用 s2 中的数值来填充 s1
print(s1.combine_first(s2))

'''
A    2.0
B    2.0
C    4.0
D    4.0
dtype: float64
'''

df1 = DataFrame({
    'X':[1, np.nan, 3, np.nan],
    'Y':[5, np.nan, 7, np.nan],
    'Z':[9, np.nan, 11, np.nan]
})

df2 = DataFrame({
    'Z':[np.nan, 10, np.nan, 12],
    'A':[1, 2, 3, 4]
})

# 功能同样是填充
print(df1.combine_first(df2))
'''
     A    X    Y     Z
0  1.0  1.0  5.0   9.0
1  2.0  NaN  NaN  10.0
2  3.0  3.0  7.0  11.0
3  4.0  NaN  NaN  12.0
'''
### 回答1: combine_first函数是pandas的一个方法,用于将两个数据框按照索引进行合并,将缺失值填充。如果两个数据框都有相同的索引,则用第一个数据框的值填充缺失值;如果只有一个数据框有该索引,则用该数据框的值填充缺失值。该方法常用于数据清洗和数据整合。 ### 回答2: combine_first函数是pandas的一个重要函数,用于将两个数据框按列合并,并且保留第一个数据框的元素,如果第一个数据框对应位置的值为缺失值(NaN),则使用第二个数据框对应位置的值进行填充。 使用combine_first函数可以解决两个数据框之间的列对齐问题,合并后的数据框将包含两个数据框的所有列,并根据列名进行对齐。如果某个列在第一个数据框存在且不为空,那么在合并后的数据框该列的值将会保留不变;如果某个列在第一个数据框不存在或为空,那么在合并后的数据框将使用第二个数据框对应列的值填充。 例如,如果有两个数据框A和B,A的某列为[1, NaN, 3],B的同一列为[4, 5, 6],则使用combine_first函数将返回的结果为[1, 5, 3],即将A的NaN值替换为B对应位置的值。 combine_first函数在数据清洗和整理经常用到,特别是在合并多个数据源时,可以方便地填充缺失值。同时,该函数还可以用于数据的增量更新,可以将已有的数据与新增的数据进行合并,并保留已有数据的值。 总之,combine_first函数是pandas一个非常有用的函数,能够方便地合并数据框并填充缺失值,提高了数据处理的效率和精确性。 ### 回答3: combine_first函数是pandas的一个函数,用于在两个Series或DataFrame对象结合数据。它的作用是将第一个对象的缺失值(NaN)用第二个对象的对应值填充,从而生成一个新的Series或DataFrame对象。 对于两个Series对象的combine_first函数,它会按照索引进行匹配,将第一个Series对象的缺失值用第二个Series对象对应索引位置的值填充。如果两个Series对象的某个索引在其一个Series对象不存在,那么该索引对应的值将被填充为缺失值。 对于两个DataFrame对象的combine_first函数,它会按照索引和列标签进行匹配,将第一个DataFrame对象的缺失值用第二个DataFrame对象对应位置的值填充。如果两个DataFrame对象的某个索引或列标签在其一个DataFrame对象不存在,那么该索引或列标签对应的值将被填充为缺失值。 combine_first函数的使用可以帮助我们合并两个数据集,并保留两个数据集的所有信息。它常用于数据清洗和数据合并的过程,能够有效地处理缺失值的情况,提高数据分析的质量和效率。 总结来说,combine_first函数是pandas库的一个有用的函数,它可以将两个Series或DataFrame对象的数据结合在一起,填充缺失值,生成一个新的数据对象,提供了便捷的数据处理和分析方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值