【3.3 激活函数(下)】

3.3 激活函数(下)


深度学习中的激活函数

在深度学习中,激活函数扮演着至关重要的角色,它们为神经网络引入了非线性特性,从而增强了模型的表达能力。以下是几种常见的激活函数及其简介、代码实现、优缺点等详细介绍。

1. Sigmoid激活函数

简介
Sigmoid函数是一个经典的激活函数,其输出范围在(0, 1)之间,常用于二分类任务中作为输出层的激活函数,表示概率。Sigmoid函数的数学表达式为:

在这里插入图片描述

代码实现(Python,使用NumPy库):

import numpy as np

def sigmoid(x):
    return 1 / (1 + np.exp(-x))

# 示例
x = np.array([-1.0, 0.0, 1.0, 2.0])
y = sigmoid(x)
print(y)  # 输出Sigmoid函数值

优缺点

  • 优点:输出值在(0, 1)之间,适合二分类问题的概率输出;平滑且易于求导,适合梯度下降算法。
  • 缺点:容易出现梯度消失问题,当输入值非常大或非常小时,梯度接近于0,导致训练困难;输出不是以0为中心,可能影响模型收敛速度;计算复杂度高,涉及指数运算。
2. Tanh激活函数

简介
Tanh函数与Sigmoid函数类似,但其输出范围在(-1, 1)之间,且以0为中心。Tanh函数的数学表达式为:

在这里插入图片描述

代码实现(Python,使用NumPy库):

def tanh(x):
    return np.tanh(x)  # NumPy库已提供tanh函数

# 示例
x = np.array([-1.0, 0.0, 1.0, 2.0])
y = tanh(x)
print(y)  # 输出Tanh函数值

优缺点

  • 优点:输出以0为中心,有助于加快收敛速度;比Sigmoid函数具有更强的非线性表达能力。
  • 缺点:仍然存在梯度消失问题;计算复杂度高,涉及指数运算。
3. ReLU激活函数

简介
ReLU(Rectified Linear Unit)函数是目前深度学习中最常用的激活函数之一,其数学表达式为:

在这里插入图片描述

代码实现(Python,使用NumPy库):

def relu(x):
    return np.maximum(0, x)

# 示例
x = np.array([-1.0, 0.0, 1.0, 2.0])
y = relu(x)
print(y)  # 输出ReLU函数值

优缺点

  • 优点:计算速度快,不涉及指数运算;能够缓解梯度消失问题;在输入为正时,梯度恒为1,有助于加速收敛。
  • 缺点:当输入为负时,神经元会“死亡”,即梯度为0,不再参与训练;输出不是以0为中心。
4. LeakyReLU激活函数

简介
LeakyReLU是对ReLU的改进,它在输入为负时引入了一个小的正斜率,以避免神经元“死亡”问题。其数学表达式为:

[
LeakyReLU(x) = \begin{cases}
x & \text{if } x > 0 \
\alpha x & \text{if } x \leq 0
\end{cases}
]
其中, α \alpha α是一个小的正数,通常取0.01。

代码实现(Python,使用NumPy库):

def leaky_relu(x, alpha=0.01):
    return np.where(x > 0, x, alpha * x)

# 示例
x = np.array([-1.0, 0.0, 1.0, 2.0])
y = leaky_relu(x)
print(y)  # 输出LeakyReLU函数值

优缺点

  • 优点:解决了ReLU的“死亡”神经元问题;增加了模型的非线性表达能力。
  • 缺点:超参数 α \alpha α需要手动调整;在某些情况下,可能不如ReLU效果好。

以上是深度学习中几种常见的激活函数的介绍、代码实现及优缺点分析。在实际应用中,应根据具体任务和数据集的特点选择合适的激活函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wang151038606

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值