# Denoising_Autoencoder

"""

"""
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

def xavier_init(fan_in, fan_out, constant=1):  #fan_in是输入节点的数量, fan_out是输出节点的数量
low = -constant* np.sqrt(6.0/( fan_in + fan_out))
high = constant* np.sqrt(6.0/( fan_in + fan_out))
return tf.random_uniform((fan_in,fan_out),
minval = low, maxval=high,
dtype= tf.float32)
def __init__(self,n_input, n_hidden, transfer_function=tf.nn.softplus,
self.n_input = n_input
self.n_hiddden = n_hidden
self.transfer = transfer_function
self.scale =tf.placeholder(tf.float32)
self.training_scale = scale
network_weights = self._initialize_weights()
self.weights = network_weights

self.x = tf.placeholder(tf.float32,[None,self.n_input])
self.x +scale*tf.random_normal((n_input,)),
self.weights['w1']),self.weights['b1']))
self.hidden, self.weight['w2']),self.weights['b2'])

#接下来定义自编码器的损失函数，这里直接使用平方误差（Squared Error)作为cost，即用tf.subtract计算输出（self.reconstruction)与输入（self.x)之差，
# 再使用tf.pow求差的平方，最后使用tf.reduce_sum求和即可得到平方误差。再定义训练操作为优化器self.optimizer对损失self.cost进行优化。最后创建Session,并初始化自编码器的全部模型参数。
self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(
self.reconstruction, self.x),2.0))
self.optimizer = optimizer.minimize(self.cost)

init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(init)

def  _initialize_weights(self):
all_weights = dict()    #先创建一个名为all_weights的字典
all_weights['w1'] = tf.Variable(xavier_init(self.n_input, self.n_hidden))
all_weights['b1'] = tf.Variable(tf.zeros([self.n_hiddden], dtype= tf.float32))
all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden,self.n_input], dtype=tf.float32))    #对于输出层self.reconstruction，因为没有使用激活函数，这里将w2,b2全部初始化为0即可。
all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))

def partial_fit(self, X):     #函数partial_fit做的就是用一个batch数据进行训练并返回当前的损失cost。
cost, opt = self.sess.run((self.cost, self.optimizer),    #让Session执行两个计算图的节点
feed_dict = {self.x:X, self.scale: self.training_scale}  )
return cost

#这个函数是在自编码器训练完毕后，在测试集上对模型进行性能评测时会用到的，它不会像partial_fit那样触发训练操作。
def calc_total_cost(self, X):
return self.sess.run(self.cost, feed_dict={self.x: X,
self.scale: self.training_scale})
#我们还定义了transform函数，它返回自编码器隐含层的输出结果。它的目的是提供一个接口来获取抽象后的特征，自编码器的隐含层的最主要功能就是学习出数据中的高阶特征。
def transform(self, X):
return self.sess.run( self.hidden, feed_dict = {self.x: X, self.scale: self.training_scale } )

#我们再定义generate函数，它将隐含层的输出结果作为输入，通过之后的重建层将提取到的高阶特征复原为原始数据。这个接口和前面的transform正好将整个自编码器拆分为两个部分
def generate(self, hidden = None):
if hidden is None:
hidden = np.random.normal(size= self.weights["b1"])
return self.sess.run(self.reconstruction,
feed_dict={self.hidden:hidden })

#接下来定义reconstruct函数，它整体运行一遍复原过程，包括提取高阶特征和通过高阶特征复原数据，即包括transform和generate两块。输入数据是原数据，输出数据是复原后的的数据
def reconstruct(self, X):
return self.sess.run(self.reconstruction, feed_dict={self.x:X,
self.scale: self.training_scale })
#这里的getWeights函数是获取隐含层的权重w1
def getWeights(self):
return self.sess.run(self.weights['w1'])
#而getBiases函数则是获取隐含层的偏置系数b1
def getBiases(self):
return self.sess.run(self.weights['b1'])
#至此，去噪自编码器的class就全部定义完了，包括神经网络的设计，权重的初始化，以及几个常用的成员函数（transform,generate等，它们属于计算图中的子图），接下来使用定义好的AGN自编码器在MNIST数据集上进行一些简单的性能测试，看看模型对数据的复原效果究竟如何。
#先在训练数据上fit出一个共用的Scaler，方法是先减去均值，再除以标准差，让数据变成0均值，且标准差为1的分布。我们直接使用sklearn.preprossing的StandardScaler这个类
def standerd_scale(X_train, X_test):
preprocessor = prep.StandardScaler().fit(X_train)
X_train = preprocessor.transform(X_train)
X_test = preprocessor.transform(X_test)
return X_test, X_train
#再定义一个获取随机block数据的函数：
def get_random_block_from_data(data, batch_size):
start_index = np.random.randint(0, len(data)-batch_size)
return data[start_index:(start_index+batch_size)]

X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)

n_samples = int(mnist.train.num_examples)   #总训练样本数
training_epochs = 20
batch_size = 128
display_step = 1 #每隔一轮（epoch）就显示一次损失 （cost）

#创建一个AGN自编码器的实例，同时将噪声的系数scale设为0.01
n_hidden= 200,
transfer_function= tf.nn.softplus,
scale=  0.01)
#下面开始训练过程，在每一轮(epoch)循环开始时，我们将平均损失设为0，并计算总共需要的batch数
#可以通过调整batch_size,epoch数，优化器，自编码器的隐含层数，隐含节点数等，来尝试获得更低的cost
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int (n_samples/batch_size)
for i n range(total_batch):
batch_xs= get_random_block_from_data(X_train,batch_size)

cost= autoencoder.partial_fit(batch_xs)    # def partial_fit(self, X):     #函数partial_fit做的就是用一个batch数据进行训练并返回当前的损失cost。

avg_cost += cost/n_samples*batch_size

if epoch % display_step ==0:
print("Epoch:",'%04d'%(epoch +1),"cost=",
"{:.9f}".format(avg_cost))

#最后，对训练完的模型进行性能测试，评价指标是平方误差
print("Total cost:" + str(autoencoder.calc_total_cost(X_test)))    #def calc_total_cost(self, X):



• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120