Multi_Layer Perceptron

"""深度学习特点:层数越深,概念越抽象,需要背诵的知识点(神经网络隐含节点)就越少。不过实际应用中,使用层数较深的神经网络会遇到许多困难,比如容易过拟合,参数难以调试,梯度弥散,等等。 过拟合: 指模型预测准确率在训练集上升高,但是在测试集上...

2018-05-16 11:44:33

阅读数:33

评论数:0

Denoising_Autoencoder

""" 自编码器(Autoencoder),顾名思义,即可以使用自身的高阶特征编码自己。也是一种神经网络,它的输入和输出是一致的,它借助稀疏编码的思想, 目的是使用稀疏的一些高阶特征重新组合来重构自己。因此,它的特征非常明显:第一,期望输入/输...

2018-05-16 11:43:22

阅读数:101

评论数:0

TensorBoard

import collections import tensorflow as tf slim = tf.contrib.slim #定义一个典型的Block,需要输入三个参数,分别是scope, unit_fn, args. #以Block('block1',bottleneck, [(25...

2018-05-16 11:42:03

阅读数:84

评论数:0

ResNet

import collections import tensorflow as tf slim = tf.contrib.slim #定义一个典型的Block,需要输入三个参数,分别是scope, unit_fn, args. #以Block('block1',bottleneck, [(25...

2018-05-16 11:40:48

阅读数:47

评论数:0

Google Inception Net

"""Inception V1 最大的特点是控制了计算量和参数量的同时,获得了非常好的分类性能——top-5错误率6.67% Inception V1 有22层深,比AlexNet的8层或者VGGNet的19层还要更深,但参数量仅为Al...

2018-05-16 11:32:10

阅读数:106

评论数:0

VGGNet

"""VGGNet是牛津大学计算机视觉组(Visual Geometry Group )与Google DeepMind一起研发的深度卷积神经网络。 结构简洁,整个网络都使用了同样大小的卷积核尺寸(3*3),和最大池化尺寸(2*2) 泛化性好,...

2018-05-16 11:30:11

阅读数:106

评论数:0

CIFAR

"""CIFAR-10,60000张32*32的彩色图像,训练集5,0000张,测试集1,0000张,标注为10类 每一类图片6000张,airplane.automobile.bird.cat.deer.dog.frog.horse.ship...

2018-05-16 11:27:26

阅读数:433

评论数:1

提示
确定要删除当前文章?
取消 删除
关闭
关闭