选课
学校实行学分制。
每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分。
学校开设了 N 门的选修课程,每个学生可选课程的数量 M 是给定的。
学生选修了这 M 门课并考核通过就能获得相应的学分。
在选修课程中,有些课程可以直接选修,有些课程需要一定的基础知识,必须在选了其他的一些课程的基础上才能选修。
例如《Windows程序设计》必须在选修了《Windows操作基础》之后才能选修。
我们称《Windows操作基础》是《Windows程序设计》的先修课。
每门课的直接先修课最多只有一门。
两门课可能存在相同的先修课。
你的任务是为自己确定一个选课方案,使得你能得到的学分最多,并且必须满足先修条件。
假定课程之间不存在时间上的冲突。
输入格式
输入文件的第一行包括两个整数N、M(中间用一个空格隔开)其中1≤N≤300,1≤M≤N。
接下来N行每行代表一门课,课号依次为1,2,…,N。
每行有两个数(用一个空格隔开),第一个数为这门课先修课的课号(若不存在先修课则该项为0),第二个数为这门课的学分。
学分是不超过10的正整数。
输出格式
输出一个整数,表示学分总数。
输入样例:
7 4
2 2
0 1
0 4
2 1
7 1
7 6
2 2
输出样例:
13
这题有两个技巧
1.在一个森林结构里dp的处理是建立一个虚点0,将其连接为所有森林的根。然后从0开始dp,权值置为0,选m+1个。
2.动态规划的三要素阶段状态决策依次顺序循环,采取背包的转移方程。
#include<bits/stdc++.h>
#define maxn 1000
using namespace std;
struct node{
int to;
int next;
}e[maxn];
int cnt,head[maxn];
void add(int u,int v){
e[++cnt].to=v;
e[cnt].next=head[u];
head[u]=cnt;
}
int f[305][305];
int n,m;
void go(int u){
for(int i=head[u];i;i=e[i].next){
int v=e[i].to;
go(v);
for(int j=m+1;j>=1;j--){
for(int k=0;k<j;k++){
f[u][j]=max(f[u][j],f[v][k]+f[u][j-k]);
}
}
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
int x,y;
scanf("%d%d",&x,&y);
add(x,i);
f[i][1]=y;
}
go(0);
// for(int i=0;i<=n;i++){
// for(int j=1;j<=m+1;j++){
// printf("%d ",f[i][j]);
// }
// printf("\n");
// }
printf("%d\n",f[0][m+1]);
}