洛谷-5160 WD与循环

题目描述
这天,WD蒟蒻为了解决一个小问题写了个很长很长的for循环:
int cnt = 0;
for (int a_1 = 0; a_1 <= m; a_1++) {
for (int a_2 = 0; a_1 + a_2 <= m; a_2++) {

for (int a_n = 0; a_1 + a_2 + … + a_n <= m; a_n++) {
cnt = (cnt + 1) % 19491001;
}
}
}
printf("%d\n", cnt);
CX过来看了一眼,说:**WD你个笨蛋,这道题不是SB题吗?**WD一脸懵逼,只好请你来教教他啦…

输入格式
第一行一个数T,表示数据组数。接下来每行两个数n,m,分别表示循环重数和每层循环的上界。

输出格式
共TT行,每行一个数表示答案。

输入输出样例
输入 #1
2
2 9
10 14

输出 #1
55
1961256

说明/提示
n,m≤1018, 1≤T≤100,000

解释:很明显模型为
a 1 + a 2 , . . . a n ≤ m a_1+a_2,...a_n \le m a1+a2,...anm的个数
a 1 + a 2 . . . , a n = m a_1+a_2...,a_n=m a1+a2...,an=m
C n + m − 1 n − 1 C_{n+m-1}^{n-1} Cn+m1n1
a n s = ∑ i = 0 M C n − 1 + i n − 1 ans=\sum\limits_{i=0}^MC_{n-1+i}^{n-1} ans=i=0MCn1+in1

∑ i = 0 M C N − 1 + i N − 1 = C N + M M \sum\limits_{i=0}^MC_{N-1+i}^{N-1}=C_{N+M}^M i=0MCN1+iN1=CN+MM
直接上LUCAS

#include<iostream>
using namespace std;
const int MOD=19491001;
long long fac[MOD+1]={};
void gf(){
    fac[0]=1;
    for(int i=1;i<MOD;i++){
        fac[i]=fac[i-1]*i%MOD;
    }
}
long long pw(long long a,long long n){
    a%=MOD;
    long long ans=1;
    while(n){
        if(n&1){
            ans=ans*a%MOD;
        }
        a=a*a%MOD;
        n/=2;
    }
    return ans;
}
long long C(long long n,long long k){
    if(k>n){
        return 0;
    }
    return fac[n]*(pw(fac[k]*fac[n-k]%MOD,MOD-2))%MOD;
}
long long lucas(long long n,long long m){
    return m?lucas(n/MOD,m/MOD)%MOD*C(n%MOD,m%MOD)%MOD:1;
}
int main(){
	ios::sync_with_stdio(false);
    int t=0;
    cin>>t;
    gf();
    long long n=0,m=0;
    while(t--){
        cin>>n>>m;
        cout<<lucas(n+m,n)<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值