题目描述
这天,WD蒟蒻为了解决一个小问题写了个很长很长的for循环:
int cnt = 0;
for (int a_1 = 0; a_1 <= m; a_1++) {
for (int a_2 = 0; a_1 + a_2 <= m; a_2++) {
…
for (int a_n = 0; a_1 + a_2 + … + a_n <= m; a_n++) {
cnt = (cnt + 1) % 19491001;
}
}
}
printf("%d\n", cnt);
CX过来看了一眼,说:**WD你个笨蛋,这道题不是SB题吗?**WD一脸懵逼,只好请你来教教他啦…
…
输入格式
第一行一个数T,表示数据组数。接下来每行两个数n,m,分别表示循环重数和每层循环的上界。
输出格式
共TT行,每行一个数表示答案。
输入输出样例
输入 #1
2
2 9
10 14
输出 #1
55
1961256
说明/提示
n,m≤1018, 1≤T≤100,000
解释:很明显模型为
a 1 + a 2 , . . . a n ≤ m a_1+a_2,...a_n \le m a1+a2,...an≤m的个数
则 a 1 + a 2 . . . , a n = m a_1+a_2...,a_n=m a1+a2...,an=m为
C n + m − 1 n − 1 C_{n+m-1}^{n-1} Cn+m−1n−1
a n s = ∑ i = 0 M C n − 1 + i n − 1 ans=\sum\limits_{i=0}^MC_{n-1+i}^{n-1} ans=i=0∑MCn−1+in−1
又
∑ i = 0 M C N − 1 + i N − 1 = C N + M M \sum\limits_{i=0}^MC_{N-1+i}^{N-1}=C_{N+M}^M i=0∑MCN−1+iN−1=CN+MM
直接上LUCAS
#include<iostream>
using namespace std;
const int MOD=19491001;
long long fac[MOD+1]={};
void gf(){
fac[0]=1;
for(int i=1;i<MOD;i++){
fac[i]=fac[i-1]*i%MOD;
}
}
long long pw(long long a,long long n){
a%=MOD;
long long ans=1;
while(n){
if(n&1){
ans=ans*a%MOD;
}
a=a*a%MOD;
n/=2;
}
return ans;
}
long long C(long long n,long long k){
if(k>n){
return 0;
}
return fac[n]*(pw(fac[k]*fac[n-k]%MOD,MOD-2))%MOD;
}
long long lucas(long long n,long long m){
return m?lucas(n/MOD,m/MOD)%MOD*C(n%MOD,m%MOD)%MOD:1;
}
int main(){
ios::sync_with_stdio(false);
int t=0;
cin>>t;
gf();
long long n=0,m=0;
while(t--){
cin>>n>>m;
cout<<lucas(n+m,n)<<endl;
}
return 0;
}