题目描述
如题,给定N个整数构成的序列,将对于指定的闭区间查询其区间内的第K小值。
输入输出格式
输入格式:
第一行包含两个正整数N、M,分别表示序列的长度和查询的个数。
第二行包含N个整数,表示这个序列各项的数字。
接下来M行每行包含三个整数 l, r, k , 表示查询区间[l, r]内的第k小值。
输出格式:
输出包含k行,每行1个整数,依次表示每一次查询的结果
输入输出样例
输入样例#1:
5 5
25957 6405 15770 26287 26465
2 2 1
3 4 1
4 5 1
1 2 2
4 4 1
输出样例#1:
6405
15770
26287
25957
26287
说明
数据范围:
对于100%的数据满足:1 ≤ \le ≤ N, M ≤ \le ≤ 2 ⋅ \cdot ⋅ 10^5
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mid (l+r)/2
using namespace std;
const int N = 200010;
int n, q, m, cnt = 0;
int a[N], b[N], T[N];
int sum[N<<5], L[N<<5], R[N<<5];
inline int build(int l, int r){
int rt = ++ cnt;
sum[rt] = 0;
if (l < r){
L[rt] = build(l, mid);
R[rt] = build(mid+1, r);
}
return rt;
}
inline int update(int pre, int l, int r, int x){
int rt = ++ cnt;
L[rt] = L[pre]; R[rt] = R[pre]; sum[rt] = sum[pre]+1;
if (l < r){
if (x <= mid) L[rt] = update(L[pre], l, mid, x);
else R[rt] = update(R[pre], mid+1, r, x);
}
return rt;
}
inline int query(int u, int v, int l, int r, int k){
if (l >= r) return l;
int x = sum[L[v]] - sum[L[u]];
if (x >= k) return query(L[u], L[v], l, mid, k);
else return query(R[u], R[v], mid+1, r, k-x);
}
int main(){
scanf("%d%d", &n, &q);
for (int i = 1; i <= n; i ++){
scanf("%d", &a[i]);
b[i] = a[i];
}
sort(b+1, b+1+n);
m = unique(b+1, b+1+n)-b-1;
T[0] = build(1, m);
for (int i = 1; i <= n; i ++){
int t = lower_bound(b+1, b+1+m, a[i])-b;
T[i] = update(T[i-1], 1, m, t);
}
while (q --){
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
int t = query(T[x-1], T[y], 1, m, z);
printf("%d\n", b[t]);
}
return 0;
}