洛谷-3834 【模板】可持久化线段树 1(主席树)

题目描述
如题,给定N个整数构成的序列,将对于指定的闭区间查询其区间内的第K小值。
输入输出格式
输入格式:
第一行包含两个正整数N、M,分别表示序列的长度和查询的个数。
第二行包含N个整数,表示这个序列各项的数字。
接下来M行每行包含三个整数 l, r, k , 表示查询区间[l, r]内的第k小值。
输出格式:
输出包含k行,每行1个整数,依次表示每一次查询的结果

输入输出样例
输入样例#1:
5 5
25957 6405 15770 26287 26465
2 2 1
3 4 1
4 5 1
1 2 2
4 4 1

输出样例#1:
6405
15770
26287
25957
26287

说明
数据范围:
对于100%的数据满足:1 ≤ \le N, M ≤ \le 2 ⋅ \cdot 10^5

#include<cstdio>
#include<cstring>
#include<algorithm>
#define mid (l+r)/2
using namespace std;
const int N = 200010;
int n, q, m, cnt = 0;
int a[N], b[N], T[N];
int sum[N<<5], L[N<<5], R[N<<5];
inline int build(int l, int r){
    int rt = ++ cnt;
    sum[rt] = 0;
    if (l < r){
        L[rt] = build(l, mid);
        R[rt] = build(mid+1, r);
    }
    return rt;
}
inline int update(int pre, int l, int r, int x){
    int rt = ++ cnt;
    L[rt] = L[pre]; R[rt] = R[pre]; sum[rt] = sum[pre]+1;
    if (l < r){
        if (x <= mid) L[rt] = update(L[pre], l, mid, x);
        else R[rt] = update(R[pre], mid+1, r, x);
    }
    return rt;
}
inline int query(int u, int v, int l, int r, int k){
    if (l >= r) return l;
    int x = sum[L[v]] - sum[L[u]];
    if (x >= k) return query(L[u], L[v], l, mid, k);
    else return query(R[u], R[v], mid+1, r, k-x);
}

int main(){
    scanf("%d%d", &n, &q);
    for (int i = 1; i <= n; i ++){
        scanf("%d", &a[i]);
        b[i] = a[i];
    }
    sort(b+1, b+1+n);
    m = unique(b+1, b+1+n)-b-1;
    T[0] = build(1, m);
    for (int i = 1; i <= n; i ++){
        int t = lower_bound(b+1, b+1+m, a[i])-b;
        T[i] = update(T[i-1], 1, m, t);
    }
    while (q --){
        int x, y, z;
        scanf("%d%d%d", &x, &y, &z);
        int t = query(T[x-1], T[y], 1, m, z);
        printf("%d\n", b[t]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值