洛谷-3911 最小公倍数之和

题目描述
对于 A 1 , A 2 , ⋯   , A N A_1,A_2,\cdots,A_N A1,A2,,AN
∑ i = 1 N ∑ j = 1 N l c m ( A i , A j ) \sum_{i=1}^N\sum_{j=1}^N lcm(A_i,A_j) i=1Nj=1Nlcm(Ai,Aj)
的值。
lcm(a,b) 表示a 和b 的最小公倍数
输入格式
第1 行,1 个整数N。
第2 行,N 个整数 A 1 , A 2 , ⋯   , A N A_1,A_2,\cdots,A_N A1,A2,,AN
输出格式
1 个整数,表示所求的值。

输入输出样例
输入 #1
2
2 3

输出 #1 复制
17

说明/提示
• 对于100% 的数据, 1 ≤ N ≤ 50000 ; 1 ≤ A i ≤ 50000 1 \le N \le 50000; 1 \le A_i \le 50000 1N50000;1Ai50000

解释: F x = ∑ i = 1 n [ A i = x ] F_x = \sum^n_{i=1} [A_i = x] Fx=i=1n[Ai=x]
即原始化为
I = ∑ x = 1 p ∑ y = 1 p [ x , y ] F x F y I=\sum^p_{x=1}\sum^p_{y=1} [x,y] F_xF_y I=x=1py=1p[x,y]FxFy
= ∑ x = 1 p ∑ y = 1 p x y F x F y ( x , y ) =\sum^p_{x=1}\sum^p_{y=1} \frac{xyF_xF_y}{(x,y)} =x=1py=1p(x,y)xyFxFy
根据经验,考虑枚举 g = ( x , y ) g=(x,y) g=(x,y)。显然 g 的取值范围为 [ 1 , p ] ∩ N [ 1 , p ] ∩ N [1,p] \cap \mathbb N[1,p]∩N [1,p]N[1,p]N
I = ∑ g = 1 p ∑ x = 1 p ∑ y = 1 p x y F x F y g [ ( x , y ) = g ] I=\sum^p_{g=1} \sum^p_{x=1} \sum^p_{y=1} \frac{xyF_xF_y}{g} [(x,y)=g] I=g=1px=1py=1pgxyFxFy[(x,y)=g]
转而枚举 x,y 的倍数。
I = ∑ g = 1 p ∑ x = 1 ⌊ p g ⌋ ∑ y = 1 ⌊ p g ⌋ g x g y F g x F g y g [ ( g x , g y ) = g ] I=\sum^p_{g=1} \sum^{\left\lfloor\frac{p}{g}\right\rfloor}_{x=1}\sum^{\left\lfloor\frac{p}{g}\right\rfloor}_{y=1} \frac{gxgyF_{gx}F_{gy}}{g}[(gx,gy)=g] I=g=1px=1gpy=1gpggxgyFgxFgy[(gx,gy)=g]
I = ∑ g = 1 p ∑ x = 1 ⌊ p g ⌋ ∑ y = 1 ⌊ p g ⌋ g x y F g x F g y ∑ d ∣ ( x , y ) μ ( d ) I=\sum^p_{g=1}\sum^{\left\lfloor\frac{p}{g}\right\rfloor}_{x=1}\sum^{\left\lfloor\frac{p}{g}\right\rfloor}_{y=1} gxyF_{gx}F_{gy} \sum_{d \mid (x,y)} \mu(d) I=g=1px=1gpy=1gpgxyFgxFgyd(x,y)μ(d)
I = ∑ g = 1 p ∑ d = 1 ⌊ p g ⌋ ∑ x = 1 ⌊ p d g ⌋ ∑ y = 1 ⌊ p d g ⌋ g d x d y F d g x F d g y μ ( d ) I=\sum^p_{g=1} \sum^{\left\lfloor\frac{p}{g}\right\rfloor}_{d=1} \sum^{\left\lfloor\frac{p}{dg}\right\rfloor}_{x=1}\sum^{\left\lfloor\frac{p}{dg}\right\rfloor}_{y=1} gdxdyF_{dgx}F_{dgy}\mu(d) I=g=1pd=1gpx=1dgpy=1dgpgdxdyFdgxFdgyμ(d)
= ∑ g = 1 p g ∑ d = 1 ⌊ p g ⌋ d 2 μ ( d ) ∑ x = 1 ⌊ p d g ⌋ ∑ y = 1 ⌊ p d g ⌋ x y F d g x F d g y =\sum^p_{g=1} g\sum^{\left\lfloor\frac{p}{g}\right\rfloor}_{d=1} d^2\mu(d)\sum^{\left\lfloor\frac{p}{dg}\right\rfloor}_{x=1}\sum^{\left\lfloor\frac{p}{dg}\right\rfloor}_{y=1} xyF_{dgx}F_{dgy} =g=1pgd=1gpd2μ(d)x=1dgpy=1dgpxyFdgxFdgy
= ∑ g = 1 p g ∑ d = 1 ⌊ p g ⌋ d 2 μ ( d ) ( ∑ x = 1 ⌊ p d g ⌋ x F d g x ) ( ∑ y = 1 ⌊ p d g ⌋ y F d g y ) =\sum^p_{g=1} g\sum^{\left\lfloor\frac{p}{g}\right\rfloor}_{d=1} d^2\mu(d)\left(\sum^{\left\lfloor\frac{p}{dg}\right\rfloor}_{x=1} xF_{dgx}\right)\left(\sum^{\left\lfloor\frac{p}{dg}\right\rfloor}_{y=1}yF_{dgy}\right) =g=1pgd=1gpd2μ(d)(x=1dgpxFdgx)(y=1dgpyFdgy)
G t = ∑ x = 1 ⌊ p t ⌋ x F t x G_t = \sum^{\left\lfloor\frac{p}{t}\right\rfloor}_{x=1} xF_{tx} Gt=x=1tpxFtx
​则原式化为
I = ∑ g = 1 p ∑ d = 1 ⌊ p g ⌋ g d 2 μ ( d ) G d g 2 I=\sum^p_{g=1}\sum^{\left\lfloor\frac pg\right\rfloor}_{d=1} gd^2\mu(d)G_{dg}^2 I=g=1pd=1gpgd2μ(d)Gdg2
I = ∑ T = 1 p ∑ d ∣ T T d d 2 μ ( d ) G T 2 I=\sum^p_{T=1}\sum_{d \mid T} \frac{T}{d} d^2 \mu(d) G^2_T I=T=1pdTdTd2μ(d)GT2
= ∑ T = 1 p T G T 2 ( ∑ d ∣ T d μ ( d ) ) = \sum^p_{T=1} TG^2_T \left(\sum_{d \mid T} d\mu(d)\right) =T=1pTGT2(dTdμ(d))
不妨设 H ( x ) = ∑ d ∣ x d μ ( d ) H(x) = \sum_{d \mid x} d\mu(d) H(x)=dxdμ(d)
∑ T = 1 p T G T 2 H ( T ) \sum^p_{T=1} TG_T^2 H(T) T=1pTGT2H(T)
最后对H筛一下就好了

#include<iostream>
#include<cstdio>
typedef long long ll;
const int N = 1e5 + 50;
long long pri[N],mu[N],phi[N],A[N],H[N],T[N],P[N],cnt;
bool isnt_p[N];
long long n;
inline void get_p(){
    isnt_p[1] = true; phi[1] = mu[1] = P[1] = 1;
    bool flag = true;
    for (int i = 1; i < N; ++i){
        if (isnt_p[i] == false){
            pri[++cnt] = i;
            mu[i] = -1;
            phi[i] = i - 1;
            P[i] = 1 - i;
        }
        for (int j = 1; j <= cnt && i * pri[j] < N; ++j){
            isnt_p[i * pri[j]] = true;
            if (i % pri[j]){
                mu[i * pri[j]] = -mu[i];
                P[i * pri[j]] = P[i] * P[pri[j]];
                phi[i * pri[j]] = phi[i] * phi[pri[j]];
            }
            else{
                mu[i * pri[j]] = 0;
                phi[i * pri[j]] = phi[i] * pri[j];
                P[i * pri[j]] = P[i]; 
                break;
            }
        }
    }
}
inline ll read() {ll x; scanf("%lld", &x); return x;}
int main(){
    get_p();
    n = read();
    const int N = 1e5;
    for (int i = 1; i <= n; ++i) A[i] = read(), ++T[A[i]];
    for (int x = 1; x <= N; ++x)
        for (int i = 1; i <= (N / x); ++i)
            H[x] += i * T[x * i];
    ll ans = 0;
    for (int i = 1; i <= N; ++i)
        ans += 1ll * i * H[i] * H[i] * P[i];
    printf("%lld", ans);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值