题目描述
给定n个点以及每个点的权值,要你处理接下来的m个操作。操作有4种。操作从0到3编号。点从1到n编号。
0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和。保证x到y是联通的。
1:后接两个整数(x,y),代表连接x到y,若x到y已经联通则无需连接。
2:后接两个整数(x,y),代表删除边(x,y),不保证边(x,y)存在。
3:后接两个整数(x,y),代表将点x上的权值变成y。
输入格式
第1行两个整数,分别为n和m,代表点数和操作数。
第2行到第n+1行,每行一个整数,整数在[1,10^9]内,代表每个点的权值。
第n+2行到第n+m+1行,每行三个整数,分别代表操作类型和操作所需的量。
输出格式
对于每一个0号操作,你须输出x到y的路径上点权的xor和。
输入输出样例
输入 #1
3 3
1
2
3
1 1 2
0 1 2
0 1 1
输出 #1
3
1
说明/提示
数据范围: 1 ≤ N , M ≤ 3 ⋅ 1 0 5 1≤N,M≤3⋅10^5 1≤N,M≤3⋅105
#include<bits/stdc++.h>
using namespace std;
const int SZ=1<<19,N=3e5+9;
char buf[SZ],*ie=buf+SZ,*ip=ie-1;
inline int in(){
if(++ip==ie)if(fread(ip=buf,1,SZ,stdin));while(*ip<'-')if(++ip==ie)if(fread(ip=buf,1,SZ,stdin));
int x=*ip&15;if(++ip==ie)if(fread(ip=buf,1,SZ,stdin));
while(*ip>'-'){x*=10;x+=*ip&15;if(++ip==ie)if(fread(ip=buf,1,SZ,stdin));}
return x;
}
int f[N],c[N][2],v[N],s[N],st[N];
bool r[N];
inline bool nroot(int x){//判断节点是否为一个Splay的根(与普通Splay的区别1)
return c[f[x]][0]==x||c[f[x]][1]==x;
}//原理很简单,如果连的是轻边,他的父亲的儿子里没有它
inline void pushup(int x){//上传信息
s[x]=s[c[x][0]]^s[c[x][1]]^v[x];
}
inline void pushr(int x){int t=c[x][0];c[x][0]=c[x][1];c[x][1]=t;r[x]^=1;}//翻转操作
inline void pushdown(int x){//判断并释放懒标记
if(r[x]){
if(c[x][0])pushr(c[x][0]);
if(c[x][1])pushr(c[x][1]);
r[x]=0;
}
}
inline void rotate(int x){//一次旋转
int y=f[x],z=f[y],k=c[y][1]==x,w=c[x][!k];
if(nroot(y))c[z][c[z][1]==y]=x;c[x][!k]=y;c[y][k]=w;//额外注意if(nroot(y))语句,此处不判断会引起致命错误(与普通Splay的区别2)
if(w)f[w]=y;f[y]=x;f[x]=z;
pushup(y);
}
inline void splay(int x){//只传了一个参数,因为所有操作的目标都是该Splay的根(与普通Splay的区别3)
int y=x,z=0;
st[++z]=y;//st为栈,暂存当前点到根的整条路径,pushdown时一定要从上往下放标记(与普通Splay的区别4)
while(nroot(y))st[++z]=y=f[y];
while(z)pushdown(st[z--]);
while(nroot(x)){
y=f[x];z=f[y];
if(nroot(y)) rotate((c[y][0]==x)^(c[z][0]==y)?x:y);
rotate(x);
}
pushup(x);
}
inline void access(int x){//访问
for(int y=0;x;x=f[y=x])
splay(x),c[x][1]=y,pushup(x);
}
inline void makeroot(int x){//换根
access(x);splay(x);
pushr(x);
}
int findroot(int x){//找根(在真实的树中的)
access(x);splay(x);
while(c[x][0])pushdown(x),x=c[x][0];
splay(x);
return x;
}
inline void split(int x,int y){//提取路径
makeroot(x);
access(y);splay(y);
}
inline void link(int x,int y){//连边
makeroot(x);
if(findroot(y)!=x)f[x]=y;
}
inline void cut(int x,int y){//断边
makeroot(x);
if(findroot(y)==x&&f[y]==x&&!c[y][0]){
f[y]=c[x][1]=0;
pushup(x);
}
}
int main(){
int n=in(),m=in();
for(int i=1;i<=n;++i)v[i]=in();
while(m--){
int type=in(),x=in(),y=in();
switch(type){
case 0:split(x,y);printf("%d\n",s[y]);break;
case 1:link(x,y);break;
case 2:cut(x,y);break;
case 3:splay(x);v[x]=y;//先把x转上去再改,不然会影响Splay信息的正确性
}
}
return 0;
}