医学图像概述

医学图像概述

引言

研究方向是医学图像分割,具体是肿瘤分割。文章记录一下学习的过程,整理一下碰到的问题和解决方案
文章内容为全网的收罗整理,博主方向为计算机方向,因此可能内容不全,望谅解!

医学图像成像技术

基础知识

CT(computed tomography,计算机断层扫描)

原理: CT 利用 X 射线穿过人体组织,根据不同组织对 X 射线的吸收程度不同,经过计算机处理生成人体 内部的横断面图像。

特点
成像速度快,适合急诊检查。
对骨骼、肺部、腹部等组织成像效果较好。
由于使用 X 射线,存在一定的辐射风险。

MRI(Magnetic Resonance Imaging,磁共振成像)

原理: MRI 利用强磁场和射频波激发人体内的氢原子核,检测其信号并通过计算机重建成像。

特点
无辐射,对人体更安全。
对软组织(如脑、脊髓、肌肉、韧带等)成像效果优于 CT。
成像时间较长,对患者配合度要求较高。

X射线(X-ray Imaging)

原理: 利用 X 射线穿透人体组织,根据组织密度的不同,产生影像。

特点:
成像速度快,成本低。
对骨骼和肺部成像效果好。
存在辐射风险。

超声成像(Ultrasound Imaging)

原理: 利用高频声波穿透人体组织,检测声波反射信号生成图像。

特点:
无辐射,对人体安全。
实时动态成像。
对软组织成像效果好,但对骨骼和气体不适用。

光学成像

原理: 利用光(如红外光、近红外光)与人体组织的相互作用生成图像。

特点:
无辐射,对人体安全。
适合浅表组织成像,如皮肤。

除了上面列举的外,还有一些成像技术,如MRI的拓展技术(fMRI、CMR、MRS)、内窥镜成像等不再一 一列举,读者可自行翻看相关资料。

医学图像格式

DICOM(Digital Imaging and Communications in Medicine)

  • 定义:国际医学影像领域的金标准,由美国国家电气制造商协会(NEMA)制定。
  • 核心特点
    • 数据整合:包含图像数据和元数据(患者信息、设备参数等)。
    • 多模态支持:兼容 CT、MRI、超声、X 射线、PET 等。
    • 网络传输协议:支持通过 DICOM 协议传输(如 PACS 系统)。
  • 文件结构
    • 单文件对应单张图像(如 CT 的一个切片)。
    • 复杂检查由多个 DICOM 文件组成。
  • 优点
    • 标准化程度高,跨设备兼容性强。
    • 支持三维重建和后处理。
  • 缺点
    • 文件体积较大。
    • 非医学软件难以直接读取。
  • 适用场景
    • 医院影像存档与传输系统(PACS)。
    • 临床诊断(如 OsiriX、RadiAnt)。

NIfTI(Neuroimaging Informatics Technology Initiative)

  • 定义:专为神经影像设计的格式,常用于 fMRI、DTI 等研究。
  • 核心特点
    • 四维数据支持:存储时间序列或三维空间数据。
    • 坐标系统:包含空间方向信息(如 RAS 坐标系)。
    • 扩展名.nii(合并格式)或 .hdr/.img(分离格式)。
  • 优点
    • 简化神经影像处理流程。
    • 支持复杂数学运算(如 SPM、FSL)。
  • 缺点
    • 不存储患者隐私信息。
    • 主要用于研究。
  • 适用场景
    • 脑功能成像(fMRI)、弥散张量成像(DTI)。

MINC(Medical Imaging NetCDF)

  • 定义:基于 NetCDF 的开源格式。
  • 核心特点
    • 支持多维数据和动态数据。
  • 适用场景:脑影像研究(如蒙特利尔神经研究所)。

NRRD(Nearly Raw Raster Data)

  • 定义:轻量级格式,支持多维数据。
  • 核心特点
    • 文本头文件(.nrrd) + 原始数据(.raw)。
  • 优点:易于读写和跨平台处理。
  • 适用场景:快速数据交换(如 ITK、VTK)。

MHD/RAW(MetaImage 格式)

  • 定义:由 ITK 推广的格式。
  • 核心特点
    • .mhd(元数据头文件) + .raw(原始数据)。
  • 适用场景:算法开发(如 3D Slicer)。

JPEG/PNG/BMP

  • 定义:通用图像格式,非医学专用。
  • 特点
    • 有损/无损压缩,无元数据。
  • 适用场景:临床报告示意图、非诊断用途。

医学图像软件

3DSlicier(目前只会用这个)、DICOM VIEWER、小赛看看

用python处理医学图像数据

此处列举两种,DICOM和MHA格式

1.DICOM

**DICOM**只是一种格式,医学成像设备(如 CT、MRI、X 射线等)通过物理原理获取患者数据后,将数据标准化转化为DICOM格式。

对于CT和MRI,其成像原理不同,但都是通仪器探测信号,CT是X射线,MRI是磁场,然后在进行数据的采集,最后将投影或者空间数据转化为横断面图像。


DICOM文件:由图像数据+元数据绑定而成,标准DICOM文件(.dcm)

用python代码读取DICOM文件信息

import pydicom

def print_dicom_info(file_path):
    # 读取DICOM文件
    ds = pydicom.dcmread(file_path)

    # 打印文件的元数据
    print(f"File path........: {file_path}")
    print(f"SOP Class UID....: {ds.SOPClassUID}")
    print(f"Patient's Name...: {ds.PatientName}")
    print(f"Patient ID.......: {ds.PatientID}")
    print(f"Modality.........: {ds.Modality}")
    print(f"Study Date.......: {ds.StudyDate}")
    print(f"Image dimensions..: {ds.Rows} x {ds.Columns}")
    print(f"Pixel Spacing....: {ds.PixelSpacing}")

    # 打印所有DICOM元数据
    print("\nComplete DICOM file content:")
    print(ds)

# 替换为你的DICOM文件路径
file_path = 'xxx.dcm'
print_dicom_info(file_path)

DICOM保存的信息比较多,这里因为隐私问题,输出结果不在展示

在这里插入图片描述
注:下面还有很多关于此DICOM文件的信息,不再截图展示了。


2.MHA

上面提到了MHD文件,一般MHD文件还会有一个同步记录的.raw文件,而.mha文件是将MHD文件和RAW文件合并到一起组成的一个文件。下面是.MHA和.MHD文件的区别

.mha.mhd 的核心区别

特征.mha.mhd + .raw
文件数量单文件(头+数据合并)双文件(头与数据分离)
数据存储二进制数据嵌入头文件末尾原始数据独立存储(.raw
压缩支持支持 GZIP 压缩通常不压缩,需手动处理
内存占用适合小文件(压缩后更小)适合大文件(避免内存瓶颈)
修改便捷性需整体读写,修改不便可单独编辑头文件或替换数据文件
常见工具支持ITK、3D Slicer、ParaView同左

我们用记事本打开.mha文件格式如下
在这里插入图片描述
这里解释一下上图中的参数

1. ObjectType = Image
    说明文件存储的是图像数据。

 2. NDims = 3
    图像的维度是三维(通常表示体数据,例如 CT 或 MRI 扫描)。

3. BinaryData = True
    图像数据是以二进制形式存储的,而不是文本形式。

4. BinaryDataByteOrderMSB = False
   - 图像数据的字节序是 **小端序**(Little Endian)。这是计算机存储数据的一种方式,表示最低有效字节存储在最低地址。

5. CompressedData = True
    图像数据是压缩的,通常为了节省存储空间。

6. CompressedDataSize = 487430
    压缩后的数据大小为 487430 字节。

7. TransformMatrix = 1 0 0 0 1 0 0 0 1
    这是一个 3×3 的单位矩阵,用于描述图像坐标系的方向。
    该矩阵表示图像的坐标轴没有旋转或变换,默认方向为标准坐标系。

8. Offset = 0 0 0
    图像的原点(起始位置)在坐标系中的偏移量为 `(0, 0, 0)`,即没有偏移。

9. CenterOfRotation = 0 0 0
    图像旋转的中心点为 `(0, 0, 0)`。对于没有旋转的图像,这通常是默认值。

10. ElementSpacing = 0.623046875 0.623046875 0.5
    每个像素或体素(体积像素)的间距,单位通常是毫米。
      第一维(X方向):间距为 0.623046875 mm。
      第二维(Y方向):间距为 0.623046875 mm。
      第三维(Z方向):间距为 0.5 mm。
    这定义了图像的空间分辨率。

11. DimSize = 512 512 419
    图像的尺寸(体素数量):
      第一维(X方向):512 个体素。
      第二维(Y方向):512 个体素。
      第三维(Z方向):419 个体素。
    总体积大小为 512 × 512 × 419。

12. AnatomicalOrientation = ???
    图像的解剖学方向(例如 RAI 表示右-前-下)。
    在这里,方向未定义。

13. ElementType = MET_UCHAR
    图像数据的类型为 无符号字符(unsigned char),通常表示每个像素的值范围是 0 到 255(8位灰度值)。

14. ElementDataFile = LOCAL
    图像数据存储在文件的本地部分,而不是引用外部文件。

关于坐标系的知识,我是学习下面这篇文章的,写的很好,有学习的可以去原文看
医学图像坐标系


处理部分待定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值