洛谷 P4137 Rmq Problem / mex (普通莫队 and 值域分块)

本文介绍了一种利用莫队算法解决区间内最小未出现自然数查询的问题。通过分块策略优化,将时间复杂度降低到O(√n),并讨论了在维护答案时如何更有效地控制时间复杂度。文章详细阐述了算法实现过程,并分享了从错误中学习和优化算法的经验。
摘要由CSDN通过智能技术生成

题目传送门 ~~~


题目大意
有一个长度为 n 的数组 a
m 次询问,每次询问一个区间内最小没有出现过的自然数。

所有数据小于 2e5

思路
无修的区间查询,考虑莫队,好像可以写,因为只需要统计每个数字出现的次数,写了,交了,TIE /(ㄒoㄒ)/~~

思考,发现删除数据的时候 mex 特别容易维护,删掉一个数,这个数出现次数变为零,比较一下它会不会成为 mex 就好。
但是,增加数据的时候 mex 的维护就很麻烦,暴力找,稳TIE。
查了一下,说给值域进行分块就行了,这样维护mex的时间复杂度可以从 O(n) 降到 O(√n ),写了,交了,TIE /(ㄒoㄒ)/~~

再思考,之前维护mex是在add函数里边,仔细一想,是不是傻,干嘛每次add都去维护mex,最后记录答案的时候维护一下 mex 不就行了嘛,写了,交了, AC /(ㄒoㄒ)/~~

再再思考,好像就是这样,以后再写莫队的时候,就要考虑一下如何维护答案的时间复杂度会更优

AC代码

#include <bits/stdc++.h>
#include <stdio.h>
#include <vector>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <stack>
#define ll long long
#define chushi(a, b) memset(a, b, sizeof(a))
#define endl "\n"
const double eps = 1e-8;
const ll INF=0x3f3f3f3f;
const int mod=1e9 + 7;
const int maxn = 2e5 + 15;
const int N=1005;
using namespace std;

int a[maxn], t[maxn], ANS = 0, ans[maxn];
int pos[maxn], R[maxn], L[maxn], tot = 0, cnt[maxn];

typedef struct Node{
	int l, r;
	int id;
} node;

int sqt;
inline bool cmp(node A, node B){
	if(A.l/sqt == B.l/sqt) return A.l/sqt%2 == 1 ? A.r < B.r : A.r > B.r;
	else return A.l/sqt < B.l/sqt;
}

node q[maxn];
inline void get_ANS(){
	int ind = 1;
	while(cnt[ind] == R[ind] - L[ind] + 1) ind++;
	for(int i = L[ind]; i <= R[ind]; i++){
		if(!t[i]){
			ANS = i;
			return;
		}
	}
}

inline void add(int num){
	if((++t[num]) == 1) cnt[pos[num]]++;
}

inline void subd(int num){
	if((--t[num]) == 0) cnt[pos[num]]--, ANS = min(ANS, num);
}

int main() {

	int n, m;
	scanf("%d %d", &n, &m);
	sqt = sqrt(n);
	for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
	for(int i = 0; i <= n; i++) pos[i] = i / sqt + 1;
	for(int i = 0; i <= n; i += sqt) L[++tot] = i, R[tot] = i + sqt - 1;
	for(int i = 1; i <= m; i++) scanf("%d %d", &q[i].l, &q[i].r), q[i].id = i;
	
	sort(q+1, q+1+m, cmp);
	
	for(int l = 1, r = 0, i = 1; i <= m; i++){
		int ln = q[i].l, rn = q[i].r;
		while(l < ln) subd(a[l++]);
		while(l > ln) add(a[--l]);
		while(r < rn) add(a[++r]);
		while(r > rn) subd(a[r--]);
		if(t[ANS]) get_ANS();
		ans[q[i].id] = ANS;
	}
	
	for(int i = 1; i <= m; i++) printf("%d\n", ans[i]);

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值