集成算法 理论

集成算法思想
这里写图片描述

boostrap抽样
这里写图片描述

bagging算法
这里写图片描述
这里写图片描述

boosting算法
这里写图片描述

Adaboost
这里写图片描述

Adaboost自适应
这里写图片描述

Adaboost算法流程
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

举例
这里写图片描述

求解
这里写图片描述

迭代过程1:对于m=1
这里写图片描述

为何G1(x)阈值v取2.5?
这里写图片描述

m=1
这里写图片描述

迭代过程2:对于m=2
这里写图片描述

为何G2(x)阈值v取8.5?
这里写图片描述

m=2
这里写图片描述

迭代过程3:对于m=3
这里写图片描述

为何G3(x)阈值v取5.5?
这里写图片描述

m=3
这里写图片描述

例子总结
这里写图片描述

多维数据的单层决策树分类器构建方法
这里写图片描述

单特征的阈值分类实现
这里写图片描述

构建单层决策树弱分类器
这里写图片描述

完整Adaboost算法实现
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值