特征降维 理论

本文主要介绍了奇异值分解(SVD)的基本概念及其在Python中的实现方法,并探讨了如何利用SVD进行低秩近似和图像压缩的技术细节。此外,文中还讨论了基于物品相似度的推荐算法,并通过具体步骤展示了如何利用物品间的相似度来预测用户的评分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

特征值分解
这里写图片描述

奇异值分解SVD
这里写图片描述

Python实现SVD
这里写图片描述
这里写图片描述
这里写图片描述

低阶近似
这里写图片描述

奇异值选取策略
这里写图片描述

相似度计算
这里写图片描述
这里写图片描述
这里写图片描述

基于物品相似度
这里写图片描述

基于物品相似度的推荐步骤
这里写图片描述

利用物品相似度预测评分
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

基于物品相似度的推荐结果
这里写图片描述

利用SVD降维
这里写图片描述
这里写图片描述

利用SVD降维前后结果比较
这里写图片描述

基于SVD的图像压缩–阈值处理
这里写图片描述

基于SVD的图像压缩
这里写图片描述
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值