首先要先清楚最大流的含义,就是说从源点到经过的所有路径的最终到达汇点的所有流量和
EK算法的核心
反复寻找源点s到汇点t之间的增广路径,若有,找出增广路径上每一段[容量-流量]的最小值delta,若无,则结束。
在寻找增广路径时,可以用BFS来找,并且更新残留网络的值(涉及到反向边)。
而找到delta后,则使最大流值加上delta,更新为当前的最大流值。
这么一个图,求源点1,到汇点4的最大流
通过分析代码,来详细叙述ek算法
#include <iostream>
#include <queue>
#include<string.h>
using namespace std;
#define arraysize 201
int maxData = 0x7fffffff;
int capacity[arraysize][arraysize]; //记录残留网络的容量
int flow[arraysize]; //标记从源点到当前节点实际还剩多少流量可用
int pre[arraysize]; //标记在这条路径上当前节点的前驱,同时标记该节点是否在队列中
int n,m;
queue<int> myqueue;
int BFS(int src,int des)
{
int i,j;
while(!myqueue.empty()) //队列清空 因为maxFlow函数调用的bfs,
myqueue.pop(); //此次bfs残余网络的队列与此次并无关系
for(i=1;i<m+1;++i) //对前驱进行标记,先初始化所有点都没有前驱
pre[i]=-1;
pre[src]=0;
flow[src]= maxData;
myqueue.push(src);
while(!myqueue.empty())
{
int index = myqueue.front();
myqueue.pop();
if(index == des) //找到了增广路径
break;
for(i=1;i<m+1;++i)
{
if(i!=src && capacity[index][i]>0 && pre[i]==-1)
{ //i!=src避免了与 源点双向连接的点 流回去又流回来的情况
//pre[i]==-1避免了重复流动的情况,每条路每个点只能有一个前驱!!!
// capacity[index][i]>0判断能不能流 有没有流量!!!
pre[i] = index; //记录前驱
flow[i] = min(capacity[index][i],flow[index]); //关键:迭代的找到增量
myqueue.push(i);
}
}
}
if(pre[des]==-1) //残留图中不再存在增广路径
return -1;
else
return flow[des];
}
int maxFlow(int src,int des)
{
int increasement= 0;
int sumflow = 0;
while((increasement=BFS(src,des))!=-1)
{
int k = des; //利用前驱寻找路径
while(k!=src) //利用pre前驱更新残余网络!!!
{
int last = pre[k];
capacity[last][k] -= increasement; //改变正向边的容量
capacity[k][last] += increasement; //改变反向边的容量
k = last;
}
sumflow += increasement;
}
return sumflow;
}
int main()
{
int i,j;
int start,end,ci;
while(cin>>n>>m)
{
memset(capacity,0,sizeof(capacity));
memset(flow,0,sizeof(flow));
for(i=0;i<n;++i)
{
cin>>start>>end>>ci;
if(start == end) //考虑起点终点相同的情况
continue;
capacity[start][end] +=ci; //此处注意可能出现多条同一起点终点的情况
}
cout<<maxFlow(1,m)<<endl;
}
return 0;
}
显而易见capacity存变的流量,进行ek求解
对于BFS找增广路:
1. flow[1]=INF,pre[1]=0;
源点1进队列,开始找增广路,capacity[1][2]=40>0,则flow[2]=min(flow[1],40)=40;
capacity[1][4]=20>0,则flow[4]=min(flow[1],20)=20;
capacity[2][3]=30>0,则flow[3]=min(folw[2]=40,30)=30;
capacity[2][4]=30,但是pre[4]=1(已经在capacity[1][4]这遍历过4号点了)
capacity[3][4].....
当index=4(汇点),结束增广路的寻找
传递回increasement(该路径的流),利用前驱pre寻找路径
路径也自然变成了这样:
2.flow[1]=INF,pre[1]=0;
源点1进队列,开始找增广路,capacity[1][2]=40>0,则flow[2]=min(flow[1],40)=40;
capacity[1][4]=0!>0,跳过
capacity[2][3]=30>0,则flow[3]=min(folw[2]=40,30)=30;
capacity[2][4]=30,pre[4]=2,则flow[2][4]=min(flow[2]=40,20)=20;
capacity[3][4].....
当index=4(汇点),结束增广路的寻找
传递回increasement(该路径的流),利用前驱pre寻找路径
图也被改成
接下来同理
这就是最终完成的图,最终sumflow=20+20+10=50(这个就是最大流的值)
这就是这个算法的精华部分,利用反向边,使程序有了一个后悔和改正的机会。