快速幂取模

由此可推知:

证明了以上的公式以后,我们可以先让a关于c取余,这样可以大大减少a的大小

于是我们做出了初次的改进:

long long ans = 1;//power(a,b)
long long a = a % c; //加上这一句

for(int i = 1;i<=b;i++){
    ans = ans * a % c;
}
ans = ans % c;

快速幂算法依赖于以下明显的公式

1.如果b是偶数,我们可以记k = (a^2)mod c,那么求((k)^b/2) mod c就可以了。

2.如果b是奇数,我们也可以记k = (a^2)mod c,那么求((k)^b/2 mod c * a) mod c 就可以了。

long long  ans=1;
a=a%c;

if(b%2==1){
   ans =(ans*a)modc; //如果是奇数,要多求一步,可以提前算到ans中
}

k=(a*a)%c; //我们取a^2而不是a
for(int i=1;i<=b/2;i++){
   ans =(ans*k)%c;
}

ans = ans % c;

 

当然,这样子治标不治本。但我们可以看到,当我们令k = (a * a) mod c时,状态已经发生了变化

我们所要求的最终结果即为:((k)^b/2) mod c而不是按原来的方法爆破(a^b)mod c所以我们发现这个过程是可以迭代下去的。当然,对于奇数的情形会多出一项a mod c,所以为了完成迭代。

当b是奇数时,我们通过ans = (ans * a) % c;来弥补多出来的这一项,此时剩余的部分就可以进行迭代了。

#include <iostream>
#include <cstdio>
using namespace std;
/*朴素算法*/
/*表示a的b次幂然后对c取余的结果*/
int power1(int a, int b, int c)
{
    int res = 1;
    for (int i = 1; i <= b; i++)
        res = (res * a) % c;
    return res;
}
/*快速幂算法*/
int power2(int a, int b, int c)
{
    int res = 1;
    a %= c;
    while (b)
    {
        if (b & 1)
            res = (res * a) % c;
        a = (a * a) % c;
        b >>= 1;
    }
    return res;
}
int main()
{
    int n;
    while (~scanf("%d", &n))
    {
        cout << power2(2, n, 9997) << endl;
        cout << power1(2, n, 9997) << endl;

    }
    return 0;
}

copy的Howe_Young的blog

copy的Howe_Young的blog

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值