【基础算法强化】(2)零子数组

1.对于长度为N的数组A,求子数组的和接近0的子数组,要求时间复杂度为O(NlogN)

思路:
1.申请累积和数组sum[i],定义sum[-1]=0;
2.∑Ak=sum(j)-sum(i-1);
3.对sum数组排序,计算相邻元素差值,其中最小值记为min_1;
4.sum数组中最小值记为min_2
5.return min(min_1,min_2);

实现代码如下:

#include <iostream>
#include <algorithm>
using std::cout;
using std::endl;
using std::min;
using std::abs;

class Solution{
public:
void sum_to_zero(int *array, int len){
    int *sum = new int[len];
    int i;
    int j;
    if (sum != NULL){
        sum[-1] = 0;
        for (i = 0; i < len; ++i){
            sum[i] = sum[i - 1] + array[i];
        }

        //排序操作
        int min_1 = sum[0];
        for (i = 0; i < len-1; ++i){
            for (j = i+1; j < len; ++j){
                if (sum[i] < sum[j]){
                    int temp = sum[i];
                    sum[i] = sum[j];
                    sum[j] = temp;
                }
            }
        }

        for (i = 0; i < len; ++i){
            printf("%d ",sum[i]);
        }
        printf("\n");

        for (i = 0; i < len; ++i){
            int dist = sum[i] - sum[i - 1];
            if (abs(dist) < abs(min_1)){
                min_1 = dist;
            }
        }

        int min_2 = sum[0];
        for (i = 0; i < len; ++i){
            if (abs(sum[i]) < abs(min_2)){
                min_2 = sum[i];
            }
        }

        cout << min(min_1, min_2) << endl;
    }
    return;
    }
};


int main()
{
    int obj_array[9] = { -13, 7,-14, 15, -6, 17, 10, -11, -4 };
    int len = sizeof(obj_array) / sizeof(int);
    Solution p;
    p.sum_to_zero(obj_array, len);

    system("pause");
    return 0;
}

算法中用到了技巧sum[-1]=0;但是由于在Heap上开辟了内存空间,因此如果直接调用delete []sum;会出现堆空间释放错误,这里是个待解决的BUG。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值