Hadoop之Windows环境下提交Job至YARN集群

一、使用前提

1.配置windows环境变量Hadoop

2.下载winutils.exe和hadoop.dll,hadoop.lib等windows的hadoop依赖文件放在本机hadoop\bin目录下 

二、方案一(使用Configuration配置相关属性)

创建一个Configuration对象时,其构造方法会默认加载hadoop中的相关配置文件core-site.xml,hdfs-site.xml,mapred-site.xml,yarn-site.xml

如果没有这些配置文件,我们可以通过手动设置

public class WcRunner {
    public static void main(String[] args) throws Exception {
            //设置需要远程服务器登录名称(防止没有权限操作)
        System.setProperty("HADOOP_USER_NAME", "hadoop");
        Configuration conf = new Configuration();
        //设置主机地址
        conf.set("fs.defaultFS", "hdfs://slave1:9000");
        //可以跨域操作系统
        conf.set("mapreduce.app-submission.cross-platform", "true");
        //设置yarn
        conf.set("mapreduce.framework.name", "yarn");
        conf.set("yarn.resourcemanager.hostname","slave1");
        //设置JAR包路径
        conf.set("mapreduce.job.jar","HadoopDemo.jar");


        Job job = Job.getInstance(conf);
        job.setJarByClass(WcRunner.class);
        //指定使用的Map和Reduce类
        job.setMapperClass(WcMapper.class);
        job.setReducerClass(WcReducer.class);

        //指定reduce输出key和value类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);

        //指定map输出类型key和value类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);

        //设置要处理数据存放位置
        FileInputFormat.setInputPaths(job, new Path("hdfs://192.168.2.100:9000/user/hadoop/srcdata"));
        //设置处理结果的输出数据存放路径
        FileOutputFormat.setOutputPath(job,new Path("hdfs://192.168.2.100:9000/user/hadoop/output"));

        //将job提交至集群
        job.waitForCompletion(true);
    }
}

三、方案二(将相关配置文件放在src路径下)

将core-site.xml、mapred-site.xml、yarn-site.xml从服务器拷贝到win后,放到classpath路径下

Configuration conf = new Configuration();在加载的时候,会自动加载这些xml

mapred-site.xml,中记得添加如下属性:

    <!--允许跨平台提交-->
    <property>
        <name>mapreduce.app-submission.cross-platform</name>
        <value>true</value>
    </property>

public class WcRunner {
    public static void main(String[] args) throws Exception {
            //设置需要远程服务器登录名称(防止没有权限操作)
        System.setProperty("HADOOP_USER_NAME", "hadoop");
        Configuration conf = new Configuration();
        //设置JAR包路径
        conf.set("mapreduce.job.jar","HadoopDemo.jar");


        Job job = Job.getInstance(conf);
        job.setJarByClass(WcRunner.class);
        //指定使用的Map和Reduce类
        job.setMapperClass(WcMapper.class);
        job.setReducerClass(WcReducer.class);

        //指定reduce输出key和value类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);

        //指定map输出类型key和value类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);

        //设置要处理数据存放位置
        FileInputFormat.setInputPaths(job, new Path("hdfs://192.168.2.100:9000/user/hadoop/srcdata"));
        //设置处理结果的输出数据存放路径
        FileOutputFormat.setOutputPath(job,new Path("hdfs://192.168.2.100:9000/user/hadoop/output"));

        //将job提交至集群
        job.waitForCompletion(true);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值