TensorFlow
马衍硕
不积跬步,无以至千里。不积小流,无以成江海。
展开
-
TensorFlow学习(一):基本概念
目录一、前言:二、相关概念1、图(Graph):2、会话(session):3、tensor:4、变量(variable):5、Feed和Fetch:6、形象比喻: 一、前言: TensorFlow是一个基于计算图的数值计算系统。(计算图是有向图) 计算图的执行顺序可以看作数据TensorFlow按照图的拓扑顺序,从输入节点逐步流过所有的中间节点,最终流到输出节点的过程。 即是从流图的一段流动到另...原创 2018-10-16 09:36:36 · 275 阅读 · 0 评论 -
TensorFlow学习(二):线性方程
目录一、问题描述:二、构建模型:三、构建损失模型:四、使用训练模型:五、完整代码:六、疑问解析: 一、问题描述: 我们知道 y=Ax+b 是简单的线性方程,假设我们有一组符合方程的(x , y)坐标,也就是有一组测试数据,如何利用TensorFlow计算出A、b的值 ? 这就是今天我们需要用tensorflow解决的问题。 二、构建模型: 我们设计线性模型 y = Wx + b 其中 x 代表输...原创 2018-10-16 11:31:29 · 759 阅读 · 0 评论 -
TensorFlow学习(三):训练神经网络的过程,及一些概念的介绍(前向传播、反向传播......)
目录1、前向传播:2、反向传播:3、训练神经网络的过程4、深度学习:5、激活函数: 1、前向传播: 前向传播是顺序的计算。 2、反向传播: 反向传播是根据已知训练数据的答案,反向调参的过程,是一个迭代的过程。 3、训练神经网络的过程 其基本的流程是: (1)选取一小部分的训练数据; (2)根据选取的数据,预测结果; 注:(1)、(2)是一个前向传播的过程 (3)比较预测值和真实数据的差距,根据差距...原创 2018-11-26 15:41:24 · 666 阅读 · 0 评论 -
tflearn执行报错:Assign requires shapes of both tensors to match. lhs shape= [32,2] rhs shape= [32
今天在运行tflearn项目的时候,由于修改了神经网络的网路结构,再次训练时出现了报错,报错信息如下: Assign requires shapes of both tensors to match. lhs shape= [32,2] rhs shape= [32,32] 报错的原因很简单,就是由于修改了网络结构造成的。 解决方法就是删去之前训练得到的checkpoint,然后重新训练。 不清...原创 2018-11-28 19:39:14 · 2413 阅读 · 0 评论