Little penguin Polo loves his home village. The village has n houses, indexed by integers from 1 to n. Each house has a plaque containing an integer, the i-th house has a plaque containing integer pi (1 ≤ pi ≤ n).
Little penguin Polo loves walking around this village. The walk looks like that. First he stands by a house number x. Then he goes to the house whose number is written on the plaque of house x (that is, to house px), then he goes to the house whose number is written on the plaque of house px (that is, to house ppx), and so on.
We know that:
- When the penguin starts walking from any house indexed from 1 to k, inclusive, he can walk to house number 1.
- When the penguin starts walking from any house indexed from k + 1 to n, inclusive, he definitely cannot walk to house number 1.
- When the penguin starts walking from house number 1, he can get back to house number 1 after some non-zero number of walks from a house to a house.
You need to find the number of ways you may write the numbers on the houses' plaques so as to fulfill the three above described conditions. Print the remainder after dividing this number by 1000000007 (109 + 7).
Input
The single line contains two space-separated integers n and k (1 ≤ n ≤ 1000, 1 ≤ k ≤ min(8, n)) — the number of the houses and the number k from the statement.
Output
In a single line print a single integer — the answer to the problem modulo 1000000007 (109 + 7).
Examples
Input
5 2
Output
54
Input
7 4
Output
1728
题意:有n个点,给每个点x定义一个px值,表示从x点会到px点,现在有两个要求:
1.从1到k的任意一点出发可以走到1点
2.从k+1到n的任意一点出发走不到1点
问满足条件的p1,p2,...,pn个数
题解:分析到 k+1到n 门牌上肯定是 k+1到n的 前k个 就相当于是:1 是根节点 其余点不断往下放 dfs搜一遍即可
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int N=1e6+10;
typedef long long ll;
const int mod=1e9+7;
ll n,k;
ll C[10][10];
ll ksm(ll a,ll b)
{
ll ans=1;
while(b)
{
if(b&1) ans=(ans*a)%mod;
b>>=1;
a=a*a%mod;
}
return ans;
}
ll dfs(ll z,ll up)
{
if(z<=0) return 1;
ll ans=0;
for(int i=1;i<=z;i++)
ans=(ans+(C[z][i]*ksm(up,i)%mod)*dfs(z-i,i)%mod)%mod;
return ans;
}
int main()
{
C[0][0]=C[1][0]=C[1][1]=1;
for(int i=2;i<=8;i++)
{
C[i][0]=1;
for(int j=1;j<=8;j++)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
}
while(~scanf("%lld%lld",&n,&k))
{
ll m=k-1;
ll ans=k,cnt=0;
cnt=dfs(k-1,1)%mod;
ans=(ans*cnt)%mod;
for(int i=1;i<=n-k;i++)
ans=(ans*(n-k))%mod;
cout<<ans<<endl;
}
return 0;
}