HDU - 4389 X mod f(x) 数位dp

题目链接:点击查看

Here is a function f(x):
   int f ( int x ) {
       if ( x == 0 ) return 0;
       return f ( x / 10 ) + x % 10;
   }


   Now, you want to know, in a given interval [A, B] (1 <= A <= B <= 10 9), how many integer x that mod f(x) equal to 0.

Input

   The first line has an integer T (1 <= T <= 50), indicate the number of test cases. 
   Each test case has two integers A, B. 

Output

   For each test case, output only one line containing the case number and an integer indicated the number of x. 

Sample Input

2
1 10
11 20

Sample Output

Case 1: 10
Case 2: 3

题解:数位dp模板题,注意到位数和最多为81,暴力枚举一下膜数即可。

dp[len][sum_w][mod][cnt] 表示长度为len,目前位数和为sum_w,膜数位mod,cnt为前面膜剩下的余数

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int dp[12][82][82][82];
int w[12];
int dfs(int len,int sum_w,int mod,int cnt,int limit)
{
	if(len<0) return sum_w==mod&&cnt==0;
	if(limit==0&&dp[len][sum_w][mod][cnt]!=-1) return dp[len][sum_w][mod][cnt];
	int ans=0;
	int tmp=limit?w[len]:9;
	for(int i=0;i<=tmp;i++)
		ans+=dfs(len-1,sum_w+i,mod,(cnt*10+i)%mod,limit&&i==tmp);
	return limit? ans:dp[len][sum_w][mod][cnt]=ans;
}
int solve(int x)
{
	int len=0;
	while(x)
	{
		w[len++]=x%10;
		x=x/10;
	}
	int ans=0;
	for(int i=1;i<=81;i++)
	{
		ans+=dfs(len-1,0,i,0,1);
//		cout<<ans<<endl;
	}
		
	return ans;
}
int main()
{
	memset(dp,-1,sizeof(dp));
	int T,nn=1;
	int l,r;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d",&l,&r);
		printf("Case %d: %d\n",nn++,solve(r)-solve(l-1));	
	}	
	return 0;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值