NBUT - 1457 Sona 莫队算法+离散化

题目链接:https://cn.vjudge.net/problem/NBUT-1457

题意:计算一个区间内,每种数 数量的三次方的和

题解:莫队算法走一遍即可,比较坑人的就是用sqrt(n*1.0)的时候要乘上1.0,否则就是CE死你

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring> 
#include<cmath>
using namespace std;
typedef long long ll;
const int N=100010;
int CM;
struct node{
	int id;
	int l,r;
	bool operator <(const node &x)const
	{
		if(l/CM != x.l/CM) return l/CM < x.l/CM;
		else return r<x.r;
	}
}q[N];
int n,m;
int a[N],b[N],len;
ll ans[N];
int num[N];
ll cul(int x)
{
	return (ll)x*x*x;
}
int main()
{
	ll res;
	int l,r;
	while(~scanf("%d",&n))
	{
		
		for(int i=1;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i];
		sort(b+1,b+1+n);
		len=unique(b+1,b+1+n)-(b+1);
		CM=(int)sqrt(n*1.0);
		for(int i=1;i<=n;i++)
		{
			a[i]=lower_bound(b+1,b+1+len,a[i])-b;
		//	cout<<a[i]<<endl;
		}
		scanf("%d",&m);
		for(int i=1;i<=m;i++)
		{
			scanf("%d%d",&q[i].l,&q[i].r);
			q[i].id=i;
			ans[i]=0;
		}
		sort(q+1,q+1+m);
		for(int i=1,j=1;j<=m;i++)
		{
			l=q[j].l+1,r=q[j].l;
			res=0;
			for(int k=0;k<=len;k++)
			{
				num[k]=0;
			}
			for(;j<=m && j<i*CM;j++)
			{
				while(l<q[j].l)
				{
					res=res-cul(num[a[l]])+cul(num[a[l]]-1);
					num[a[l]]--;
					l++;
				}
				while(l>q[j].l)
				{
					l--;
					num[a[l]]++;
					res=res+cul(num[a[l]])-cul(num[a[l]]-1);
				}
				while(r<q[j].r)
				{
					r++;
					num[a[r]]++;
					res=res+cul(num[a[r]])-cul(num[a[r]]-1);
				}
				while(r>q[j].r)
				{
					res=res-cul(num[a[r]])+cul(num[a[r]]-1);
					num[a[r]]--;
					r--;
				}
				ans[q[j].id]=res; 
			}
		}
		for(int i=1;i<=m;i++)
			printf("%lld\n",ans[i]);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>