题目链接:https://ac.nowcoder.com/acm/contest/881/H
题意:对于所有异或和为0的子集大小加和
题集:像这种异或和的我们就考虑用线性基来做,因为要求的是子集大小的总和,那我们就对于每一个数来说,来计算他的贡献。首先我们用n个数建立一个线性基a1,如果这n个数都用上了,那就说明不可能有子集异或和为0,否则,如果有m个用上了,剩下了n-m个,那就说明剩下的数都能用基内的数表示,对于没用上的数x来说,他能和外面的数搭配方案有2^(n-m-1)中,因此对于外面的数来说就有(n-m)*2^(n-m-1),对于基内的数来说,因为基内的数并不多,因此我们就可以枚举每个数,来看一下能不能通过其他数来表示,如果可以的话,他的贡献同样是2^(n-m-1)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
const ll mod = 1e9 + 7;
struct node {
ll p[65];
node() {
for(int i = 0; i < 65; i++) p[i] = 0;
}
bool insert(ll x) {
for(int i = 60; i >= 0; i--) {
if((x >> i) & 1 ) {
if(!p[i]) {
p[i] = x;
break;
}
x ^= p[i];
}
}
return x > 0;
}
};
int n, len;
ll c[N], f[N];
int main() {
ll x, ans; f[0] = 1;
for(int i = 1; i <= 100000; i++) f[i] = f[i - 1] * 2 % mod;
while(~scanf("%d", &n) ) {
node a1, a2, a3;
len = 0;
for(int i = 1; i <= n; i++) {
scanf("%lld", &x);
if(a1.insert(x)) c[++len] = x; // 基内
else a2.insert(x);
}
if(n == len ) {
printf("0\n"); continue;
}
ans = 1LL * (n - len) * f[n - len - 1] % mod;
for(int i = 1; i <= len; i++) {
a3 = a2;
for(int j = 1; j <= len; j++) {
if(i == j) continue;
a3.insert(c[j]);
}
if(a3.insert(c[i]) == 0) ans = (ans + f[n - len - 1]) % mod;
}
printf("%lld\n", ans);
}
return 0;
}