2019牛客暑期多校训练营(第一场)H XOR 线性基

题目链接:https://ac.nowcoder.com/acm/contest/881/H

题意:对于所有异或和为0的子集大小加和

题集:像这种异或和的我们就考虑用线性基来做,因为要求的是子集大小的总和,那我们就对于每一个数来说,来计算他的贡献。首先我们用n个数建立一个线性基a1,如果这n个数都用上了,那就说明不可能有子集异或和为0,否则,如果有m个用上了,剩下了n-m个,那就说明剩下的数都能用基内的数表示,对于没用上的数x来说,他能和外面的数搭配方案有2^(n-m-1)中,因此对于外面的数来说就有(n-m)*2^(n-m-1),对于基内的数来说,因为基内的数并不多,因此我们就可以枚举每个数,来看一下能不能通过其他数来表示,如果可以的话,他的贡献同样是2^(n-m-1)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
const ll mod = 1e9 + 7;
struct node {
	ll p[65];
	node() {
		for(int i = 0; i < 65; i++) p[i] = 0;
	}
	bool insert(ll x) {
		for(int i = 60; i >= 0; i--) {
			if((x >> i) & 1 ) {
				if(!p[i]) {
					p[i] = x;
					break;
				}
				x ^= p[i];
			}
		}
		return x > 0;
	}
};
int n, len;
ll c[N], f[N];
int main() {
	ll x, ans; f[0] = 1;
	for(int i = 1; i <= 100000; i++) f[i] = f[i - 1] * 2 % mod;
	while(~scanf("%d", &n) ) {
		node a1, a2, a3;
		len = 0;
		for(int i = 1; i <= n; i++) {
			scanf("%lld", &x);
			if(a1.insert(x)) c[++len] = x; // 基内 
			else a2.insert(x);	
		}
		if(n == len ) {
			printf("0\n"); continue;
		}
		ans = 1LL * (n - len) * f[n - len - 1] % mod;
		for(int i = 1; i <= len; i++) {
			a3 = a2;
			for(int j = 1; j <= len; j++) {
				if(i == j) continue;
				a3.insert(c[j]);
			}
			if(a3.insert(c[i]) == 0) ans = (ans + f[n - len - 1]) % mod;
		} 
		printf("%lld\n", ans);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值