# 引言
在人工智能领域中,调用和集成多种领先的开源模型一直是一个复杂且耗时的过程。然而,Together AI 提供了一个简化解决方案,只需几行代码即可使用50多个领先的开源模型。本文将展示如何使用LangChain库来与Together AI的模型进行交互,实现复杂任务的简化。
# 主要内容
## 什么是Together AI?
Together AI 是一个平台,允许开发者通过API访问多个开放源代码AI模型。这些模型涵盖了聊天、语言处理、代码生成等多个领域。通过一个简单的API,开发者可以通过统一的接口调用不同的模型,简化了处理AI任务的复杂性。
## 环境配置
要使用Together AI,首先需要获取一个API密钥,可以在[这里](https://api.together.ai/settings/api-keys)找到。然后,可以通过初始化参数`together_api_key`或设置环境变量`TOGETHER_API_KEY`来配置此密钥。
```bash
%pip install --upgrade langchain-together
如何与Together AI模型交互?
LangChain库提供了与Together AI交互的便捷方式。下面我们将展示如何实现与聊天模型和代码生成模型的交互。
代码示例
查询聊天模型
下面是如何使用LangChain库与Together AI的聊天模型交互的一个示例:
from langchain_together import ChatTogether
# 创建一个聊天对象,选择合适的模型
chat = ChatTogether(
# together_api_key="YOUR_API_KEY", # 请替换为您的API密钥
model="meta-llama/Llama-3-70b-chat-hf",
)
# 流式返回模型响应
for m in chat.stream("Tell me fun things to do in NYC"):
print(m.content, end="", flush=True)
# 使用API代理服务提高访问稳定性
可以看出,只需几行代码,我们即可与模型进行交互。如果不想使用流式返回,可以选择使用invoke
方法:
# chat.invoke("Tell me fun things to do in NYC")
查询代码和语言模型
对于编程语言模型的查询,同样也十分简单:
from langchain_together import Together
llm = Together(
model="codellama/CodeLlama-70b-Python-hf",
# together_api_key="YOUR_API_KEY", # 请替换为您的API密钥
)
print(llm.invoke("def bubble_sort(): "))
# 使用API代理服务提高访问稳定性
常见问题和解决方案
-
访问受限问题:由于某些地区可能存在网络限制,建议使用API代理服务,这样可以提高访问的稳定性。
-
API密钥管理:确保API密钥妥善保管,不要暴露在代码库中。可以考虑使用环境变量进行管理。
总结和进一步学习资源
通过Together AI和LangChain的结合,我们可以轻松调用多个领先的开源模型,实现复杂AI任务的简化。对于进一步的学习,可以访问以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---