探索Together AI:轻松调用多个开放源代码模型

# 引言

在人工智能领域中,调用和集成多种领先的开源模型一直是一个复杂且耗时的过程。然而,Together AI 提供了一个简化解决方案,只需几行代码即可使用50多个领先的开源模型。本文将展示如何使用LangChain库来与Together AI的模型进行交互,实现复杂任务的简化。

# 主要内容

## 什么是Together AI?

Together AI 是一个平台,允许开发者通过API访问多个开放源代码AI模型。这些模型涵盖了聊天、语言处理、代码生成等多个领域。通过一个简单的API,开发者可以通过统一的接口调用不同的模型,简化了处理AI任务的复杂性。

## 环境配置

要使用Together AI,首先需要获取一个API密钥,可以在[这里](https://api.together.ai/settings/api-keys)找到。然后,可以通过初始化参数`together_api_key`或设置环境变量`TOGETHER_API_KEY`来配置此密钥。

```bash
%pip install --upgrade langchain-together

如何与Together AI模型交互?

LangChain库提供了与Together AI交互的便捷方式。下面我们将展示如何实现与聊天模型和代码生成模型的交互。

代码示例

查询聊天模型

下面是如何使用LangChain库与Together AI的聊天模型交互的一个示例:

from langchain_together import ChatTogether

# 创建一个聊天对象,选择合适的模型
chat = ChatTogether(
    # together_api_key="YOUR_API_KEY",  # 请替换为您的API密钥
    model="meta-llama/Llama-3-70b-chat-hf",
)

# 流式返回模型响应
for m in chat.stream("Tell me fun things to do in NYC"):
    print(m.content, end="", flush=True)
    # 使用API代理服务提高访问稳定性

可以看出,只需几行代码,我们即可与模型进行交互。如果不想使用流式返回,可以选择使用invoke方法:

# chat.invoke("Tell me fun things to do in NYC")

查询代码和语言模型

对于编程语言模型的查询,同样也十分简单:

from langchain_together import Together

llm = Together(
    model="codellama/CodeLlama-70b-Python-hf",
    # together_api_key="YOUR_API_KEY",  # 请替换为您的API密钥
)

print(llm.invoke("def bubble_sort(): "))
# 使用API代理服务提高访问稳定性

常见问题和解决方案

  1. 访问受限问题:由于某些地区可能存在网络限制,建议使用API代理服务,这样可以提高访问的稳定性。

  2. API密钥管理:确保API密钥妥善保管,不要暴露在代码库中。可以考虑使用环境变量进行管理。

总结和进一步学习资源

通过Together AI和LangChain的结合,我们可以轻松调用多个领先的开源模型,实现复杂AI任务的简化。对于进一步的学习,可以访问以下资源:

参考资料

  1. Together AI API 文档
  2. LangChain 官方文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值