探索Ollama Embeddings:开启文本向量化的新篇章

探索Ollama Embeddings:开启文本向量化的新篇章

引言

在自然语言处理领域,向量化是将文本数据转化为模型可理解的数值数据的关键步骤之一。Ollama Embeddings 为开发者提供了高效的文本嵌入解决方案,支持将文本转化为高维向量,适用于多种应用场景。本文旨在介绍如何使用Ollama Embeddings模型,帮助你快速入门,并为深度学习模型的开发提供工具。

主要内容

安装与配置

要开始使用Ollama嵌入模型,首先需要安装必要的软件包和设置本地环境:

%pip install langchain_ollama

配置本地Ollama实例

  1. 下载并安装 Ollama,支持的平台包括 Windows Subsystem for Linux。

  2. 使用 ollama pull <name-of-model> 命令获取可用的LLM模型。例如:

    ollama pull llama3
    

这将下载默认标记版本的模型。通常,该默认值指向最新的、参数最小的模型版本。

  • 在Mac上,模型将会下载到 ~/.ollama/models
  • 在Linux或WSL上,模型将会储存于 /usr/sh
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值