探索Ollama Embeddings:开启文本向量化的新篇章
引言
在自然语言处理领域,向量化是将文本数据转化为模型可理解的数值数据的关键步骤之一。Ollama Embeddings 为开发者提供了高效的文本嵌入解决方案,支持将文本转化为高维向量,适用于多种应用场景。本文旨在介绍如何使用Ollama Embeddings模型,帮助你快速入门,并为深度学习模型的开发提供工具。
主要内容
安装与配置
要开始使用Ollama嵌入模型,首先需要安装必要的软件包和设置本地环境:
%pip install langchain_ollama
配置本地Ollama实例
-
下载并安装 Ollama,支持的平台包括 Windows Subsystem for Linux。
-
使用
ollama pull <name-of-model>
命令获取可用的LLM模型。例如:ollama pull llama3
这将下载默认标记版本的模型。通常,该默认值指向最新的、参数最小的模型版本。
- 在Mac上,模型将会下载到
~/.ollama/models
- 在Linux或WSL上,模型将会储存于
/usr/sh