如何为聊天机器人实现无用户反馈的智能评价系统
随着大语言模型(LLM)的广泛应用,聊天机器人已成为众多应用程序中用户交互的核心。然而,衡量聊天机器人性能的标准并不总是显而易见。用户往往不愿意给出明确的反馈,比如点赞或踩,而传统的分析指标如"会话长度"往往也缺乏清晰的指向性。在这篇文章中,我们将介绍如何实现一个无需用户显式反馈的智能评价系统,以获得更精准的性能评估。
聊天机器人评价的重要性
在LangChain的案例研究中,仅大约0.04%的查询收到明确的用户反馈。但令人惊讶的是,约70%的查询是对之前问题的跟进。这种对话的延续性提供了丰富的信息,帮助我们推断AI响应的质量。本文提供的模板正是为解决这个"反馈稀缺"问题。
实施评价器
为了推断用户反馈,我们实现了一个自定义的RunEvaluator
。这是通过EvaluatorCallbackHandler
调用的,确保不干扰聊天机器人的实时操作。
my_chain.with_config(
callbacks=[
EvaluatorCallbackHandler(
evaluators=[
ResponseEffectivenessEvaluator(evaluate_response_effectiveness)
]
)
],
)
此评价器使用了OpenAI的gpt-3.5-turbo
模型来根据用户的后续响应评估AI的反应效率。它生成一个评分和附加的原因分析,并将其转化为反馈,提交给LangSmith进行进一步优化。
部署和使用
在部署时,我们建议配置服务器以返回回调事件,以确保在生成的任何跟踪中都包含后端跟踪。
from functools import partial
from typing import Dict, Optional, Callable, List