使用Infinity Embeddings实现语义搜索:Langchain与Infinity的完美结合

引言

随着自然语言处理技术的进步,语义搜索正成为信息检索的重要手段。结合高效的嵌入模型与强大的API服务,开发者可以轻松实现复杂的搜索功能。在这篇文章中,我们将探讨如何使用Infinity Embeddings,通过Langchain库,来进行语义搜索。本文将提供详细的步骤、代码示例,讨论潜在的挑战,并推荐进一步学习的资源。

主要内容

使用Langchain与Infinity Embeddings

Langchain是一个广泛使用的自然语言处理库,它支持多种嵌入模型的使用。Infinity Embeddings提供了一种简便的方法来生成文本嵌入,从而实现复杂的语义搜索。本文将介绍如何在本地环境中设置Infinity服务,以及如何通过API调用嵌入服务。

安装必要的依赖

首先,确保安装了Infinity Embeddings库及其依赖:

pip install infinity_emb[torch,optimum]  # 安装Infinity Embeddings的torch和onnx依赖

嵌入文档与查询

设定待处理的文档与查询:

documents = [
    "Baguette is a dish.",
    "Paris is the capital of France.",
    "numpy is a lib for linear algebra",
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值