base
mmLxfz
这个作者很懒,什么都没留下…
展开
-
课程学习总结6
Classx-优化算法进阶Momentum(动量)目标函数f(x)f(x)f(x)关于自变量xxx的梯度∂f(x)∂x∣x=x0\frac{\partial f(x)}{\partial x} |_{x=x_{0}}∂x∂f(x)∣x=x0,代表了f(x)f(x)f(x)在x=x0x=x_{0}x=x0的下降最快的方向,因此,梯度下降也叫作最速下降(steepest descent)。...原创 2020-02-23 14:42:00 · 305 阅读 · 0 评论 -
课程学习总结4
Classx-GAN1. GAN基本理论神经网络世界中,根据目标不同,可以分为两大类:判别网络(discriminative learning):得到数据到label的映射模型,比如分类和回归模型。该部分通过反向传播技术,已经达到很好的效果;生成模型(Generative learning):学习出给定数据集的样本分布,生成相似的新样本。两种类别并非完全独立,比如,近几年来,学术界常常使...原创 2020-02-23 11:36:09 · 866 阅读 · 0 评论 -
课程学习总结3
Classx-word2vec(词嵌入基础)1. 基本理论-Word2Vec词语的表示:1)one-hot模型,每个单词一个序号,表示简单,但忽略了词语的语义信息,比如两个意义相近的词语其表示的相似度应该也高。为了在表示上保留词语的语义信息,引入’Word2Vec 词嵌入工具‘。2)Word2Vec:每个词表示成一个定长向量,通过在语料库上的预训练,使得定长向量能表达不同词之间的相似和类...原创 2020-02-22 19:08:08 · 567 阅读 · 0 评论 -
课程学习总结2
Class13-循环神经网络进阶1.1 引入1.1.1 Recurrent Neural Network, RNN用于处理带有‘时序性’的数据,数据中一个unit与其前后unit有关.RNN网络结构:从上式可以看到:Ht−1H_{t-1}Ht−1为t−1t-1t−1时刻的隐藏层输入,XtX_tXt为t时刻的输入。比较神经网络(NN)的公式:$HW+b ,我们可以看到之前时刻, 我...原创 2020-02-19 16:47:46 · 1064 阅读 · 0 评论 -
课程学习总结1
Class1-线性回归本节课主要介绍线性回归模型基础知识,该方法的python实现及pytorch实现1.1 线性回归模型:1.2 专有名词数据集:训练集、测试集、样本、特征、标签1.3 损失函数1.4 优化方法小批量随机梯度下降Class2 – softmax和分类模型2.1 softmax基本知识Class3...原创 2020-02-14 21:20:45 · 357 阅读 · 2 评论