-
EM 一种聚类算法
- 为每个样本随机赋予类别。
- 计算每个类别的分布。
- 根据分布重新为每个样本分配类别。
- 根据迭代后的样本&类别计算分布,并一直迭代下去。
马尔可夫分支:
1. 马尔可夫网 (判别式,无项有环图):1)Gibbs(玻尔兹曼机) 2)CRF条件随机场 3)马尔可夫随机场
2.1 动态贝叶斯 (生成式,有向无环图):1)卡尔曼滤波 2)HMM 隐马尔可夫 2.2 静态贝叶斯
先验估计:data-->label
后验估计: data-->label
似然估计:label-->data
EM应用:
-
Markov Random Field
S,样本;w,类别
- 随机给一张图片每个像素指定类别(kmeans预聚类效果更好),此时认为每个类别像素值都符合高斯分布。可以得到分布参数。
- P(S|W)为每个像素计算在每个类别的似然概率,同时计算8个相邻像素每个类别的占比。
- 每个类别得分=log(似然概率)+log(相邻像素该类别占比),该像素归到得分最高的类别。
- 更新类别后的图片继续迭代第2&3个步骤。
EM应用:
-
RANSAC 随机抽样一致
有噪声的拟合,离群值检测
最小二乘由于会尽可能拟合所有点所以不适用于有噪声情况。非确定方法,效果受到迭代次数和有效点占比影响。
1. 随机假设一组局内点为初始值,用此局内点拟合模型。
2. 用所有点去测试模型判断误差。
3. 符合条件的点重新成为局内点构建模型。
4. 迭代直至局内点数量达标