EM 期望最大化算法

  • EM 一种聚类算法

    1. 为每个样本随机赋予类别。
    2. 计算每个类别的分布。
    3. 根据分布重新为每个样本分配类别。
    4. 根据迭代后的样本&类别计算分布,并一直迭代下去。

 

马尔可夫分支:

1. 马尔可夫网 (判别式,无项有环图):1)Gibbs(玻尔兹曼机) 2)CRF条件随机场 3)马尔可夫随机场

2.1 动态贝叶斯 (生成式,有向无环图):1)卡尔曼滤波 2)HMM 隐马尔可夫 2.2 静态贝叶斯

先验估计:data-->label
后验估计:  data-->label
似然估计:label-->data

 

EM应用:

  • Markov Random Field

    S,样本;w,类别

    1. 随机给一张图片每个像素指定类别(kmeans预聚类效果更好),此时认为每个类别像素值都符合高斯分布。可以得到分布参数。
    2. P(S|W)为每个像素计算在每个类别的似然概率,同时计算8个相邻像素每个类别的占比。
    3. 每个类别得分=log(似然概率)+log(相邻像素该类别占比),该像素归到得分最高的类别。
    4. 更新类别后的图片继续迭代第2&3个步骤。

 

EM应用:

  • RANSAC 随机抽样一致 

    有噪声的拟合,离群值检测
    最小二乘由于会尽可能拟合所有点所以不适用于有噪声情况。非确定方法,效果受到迭代次数和有效点占比影响。
    1. 随机假设一组局内点为初始值,用此局内点拟合模型。
    2. 用所有点去测试模型判断误差。
    3. 符合条件的点重新成为局内点构建模型。
    4. 迭代直至局内点数量达标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值