Fisher r-z变换,z-score标准化与常用标准化

Z-score标准化  这是数据处理最常用的方法
    * 目标:均值0,方差1
h(x1) = (h(x1)-mean(h(X))/squareroot(sum of h(xi)*h(xi))

 

标准化 (标准差置1)
    * 目标:标准差为1
    * 需要方法: PCA
    * Tips: 图像不需要因为他们都是有界像素值,只需要中心化
h(x1) = h(x1)/squareroot(sum of h(xi)*h(xi))

 

中心化 (0均值化)
    * 目标: 均值为0,增加基向量正交性
    * 需要方法: PCA
h(x1) = h(x1) - mean(h(X))

 

Min-Max标准化(归一化)
    * 目标: 把数据映射到0-1,但随着新加入的数据会导致max&min变化
h(x1) = (h(x1)-mean(h(X)))/(max(h(X))-min(h(X)))
h(x1) = (h(x1)-min(h(X)))/(max(h(X))-min(h(X)))

 

 

 

 

 

在做FC或voxel-wise degree centrality (体素方法度中心性)时,两个体素之间X和Y的相关系数(peasrson相关):

FC通常用Fisher

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值