Z-score标准化 这是数据处理最常用的方法
* 目标:均值0,方差1
h(x1) = (h(x1)-mean(h(X))/squareroot(sum of h(xi)*h(xi))
标准化 (标准差置1)
* 目标:标准差为1
* 需要方法: PCA
* Tips: 图像不需要因为他们都是有界像素值,只需要中心化
h(x1) = h(x1)/squareroot(sum of h(xi)*h(xi))
中心化 (0均值化)
* 目标: 均值为0,增加基向量正交性
* 需要方法: PCA
h(x1) = h(x1) - mean(h(X))
Min-Max标准化(归一化)
* 目标: 把数据映射到0-1,但随着新加入的数据会导致max&min变化
h(x1) = (h(x1)-mean(h(X)))/(max(h(X))-min(h(X)))
h(x1) = (h(x1)-min(h(X)))/(max(h(X))-min(h(X)))
在做FC或voxel-wise degree centrality (体素方法度中心性)时,两个体素之间X和Y的相关系数(peasrson相关):
FC通常用Fisher