9、地理社交网络中的隐私问题剖析

地理社交网络中的隐私问题剖析

在当今数字化时代,地理社交网络(GSNs)逐渐成为人们社交和生活的一部分。然而,随之而来的隐私问题也日益凸显。我们不禁要问,将信息发布在线,我们的信息真的得到妥善保护了吗?这些简单的问题促使我们认真对待隐私问题。

1. 地理社交网络概述

1.1 什么是地理社交网络

地理社交网络是一种基于网络或移动设备的服务,它允许用户创建包含地理定位数据(以及其他额外信息)的个人资料,与系统中的其他用户建立连接,分享地理定位数据,并与其他用户提供的内容进行互动,例如评论、回复或评分。用户通过创建带有地理定位数据的个人资料,实现了地理标识,从而在现实世界和虚拟世界之间建立了直接联系。

更精确地说,基于位置的社交网络(LBSN)不仅意味着在现有的社交网络中添加位置信息,以便社交结构中的人们可以分享嵌入位置的信息,还包括由个人之间基于其在现实世界中的位置相互依赖关系以及他们带有位置标签的媒体内容(如照片、视频和文本)组成的新社交结构。这种位置嵌入和位置驱动的社交结构有助于弥合现实世界和虚拟世界之间的差距,使我们能够深入了解用户的偏好、行为和活动。

1.2 地理社交网络的分类

由于地理社交网络是一个相对较新的概念,目前还没有一个明确的分类。学者们根据自己的标准对其进行分类,其中郑提出的三种主要分类方式较为常用:
- 基于地理标签媒体的服务 :这些服务允许用户在文本、照片、视频等媒体内容上添加位置标签和评论。例如Flickr、Panoramio和Geo - twitter。
- 基于点位置驱动的服务 :鼓励人们通过

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值