为什么要有ndarray的数据类型?看下面的例子。
1.计算A^2+B^2,其中A,B是以为数组。
这是一般的做法:
def pysum():
a = [0,1,2,3,4]
b = [5,6,7,8,9]
c = []
for i in range(len(a)):
c.append(a[i]**2 + b[i]**3)
return c
print(pysum())
这是使用ndarray的做法:
import numpy as np
def pysum():
a = np.array([0,1,2,3,4])
b = np.array([5,6,7,8,9])
c = a**2 + b**3
return c
print(pysum())
从中可以很清楚的感受到ndarray的方便之处,它能够去掉循环的步骤,效率高,且容易理解。
从上面的例子中,可以知道ndarray通过np.array()函数创建。ndarray的直接输入形式和以print()输出的形式是不同的:
>>>c = np.array([1,2,3,4,5])
>>>c
array([1, 2, 3, 4, 5])
>>>print(c)
[1 2 3 4 5]
下面是有关ndarray对象的一些属性: