numpy数据类型ndarray

这篇博客探讨了numpy的ndarray数据类型在数组运算中的优势,通过对比普通做法和使用ndarray计算A^2+B^2的例子,强调了ndarray能去除循环,提高效率。还介绍了ndarray的创建方式np.array()以及其属性,提醒了非同质ndarray对象可能带来的问题。
摘要由CSDN通过智能技术生成

为什么要有ndarray的数据类型?看下面的例子。

1.计算A^2+B^2,其中A,B是以为数组。

这是一般的做法:

def pysum():
    a = [0,1,2,3,4]
    b = [5,6,7,8,9]
    c = []

    for i in range(len(a)):
        c.append(a[i]**2 + b[i]**3)
    return c

print(pysum())

这是使用ndarray的做法:

import numpy as np

def pysum():
    a = np.array([0,1,2,3,4])
    b = np.array([5,6,7,8,9])

    c = a**2 + b**3

    return c

print(pysum())

从中可以很清楚的感受到ndarray的方便之处,它能够去掉循环的步骤,效率高,且容易理解。

从上面的例子中,可以知道ndarray通过np.array()函数创建。ndarray的直接输入形式和以print()输出的形式是不同的:

>>>c = np.array([1,2,3,4,5])
>>>c
array([1, 2, 3, 4, 5])
>>>print(c)
[1 2 3 4 5]

下面是有关ndarray对象的一些属性:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值